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Abstract

Sparse autoencoders (SAEs) have been used to interpret activity inside large lan-
guage models as “superposition codes” for sparse, high-dimensional signals. The
encoder layers of these autoencoders use simple methods, which we will call one-
step estimates, to read latent sparse signals from vectors of hidden neuron activa-
tions. This work investigates the reliability of one-step estimates on a family of
sparse inference problems designed to model the very sparse latents encountered
by SAEs in practice. We show that these estimates are remarkably inefficient from
the point of view of coding theory: they are only reliable when the dimension of
the code exceeds the entropy of the latent signal by a factor of 2.8 dimensions per
bit, and this factor increases significantly as more data is stored in superposition.
In comparison, a very naive iterative method called matching pursuit can read su-
perposition codes given just 1.3 dimensions per bit. Our results address a lack of
practical references on sparse inference in a very sparse regime and provide a pos-
sible information-theoretic explanation for the limited success of current SAEs.

1 Introduction

If each neuron in a given neural network coded for a “meaningful” feature of its input, we could
hope to reverse-engineer this network’s overall behavior on a neuron-by-neuron basis. However,
individual neurons of real-world networks often lack clear interpretations. For example, both lan-
guage models and vision models have been found to learn neurons that correlate simultaneously
with apparently unrelated features. (See for example Nguyen et al. (2016), Zhang & Wang (2023)
and Olah et al. (2020).)

The difficulty of interpreting a network in terms of its local activity—and in particular, the appear-
ance of so-called “polysemantic neurons”—is not surprising from a connectionist viewpoint. Since
at least the 1980s, proponents of neural networks have argued that these systems may naturally use
distributed representations—coding schemes where individual features are represented by pat-
terns spread over many neurons, and conversely where each neuron carries information on many
features. (This term was apparently coined in Rumelhart et al. (1986), Chapter 3.) In contrast, a lo-
cal representation would dedicate each neuron to a single feature. (See Thorpe (1989) for a general
discussion of local and distributed codes.) Figure 1 illustrates a classic example of a coarse code,
one kind of distributed representation.

It is not clear how deep neural networks learn to represent information in their hidden layers or
to what extent this information can be interpreted. However, should “interpretable features” exist,
the connectivist viewpoint makes it natural that they would be stored with non-local codes. This
is a common assumption in interpretability research today; for example, when Meng et al. (2022)
intervened on an MLP layer of a language model to “edit” a factual association, both the “subject”
and the “fact” were modeled as vectors of neuron activations rather than as individual neurons.
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Figure 1: A coarse code representing a point on
a plane. Each “neuron,” drawn as a red or blue
square, encodes whether the point belongs to an
associated “receptive field.” Although no neuron
gives specific information on the position of the
point, the overall code determines its position with
reasonable accuracy.

How can we infer latent features learned by a neural network? One simple proposal is to model an
activation vector x as a linear projection

x = Fy

of some high-dimensional and sparse vector y of latent features. We refer to the columns of F as
codewords and the whole matrix F as a dictionary. Since x is a linear superposition of codewords,
we will call it a superposition code for y. The task of inferring the sparse vector y from x is known
as sparse reconstruction, and the task of inferring the dictionary F from a distribution over x is
called dictionary learning. Both of these problems have been studied in the field of compressive
sensing, although with different applications in mind. (See Elad (2010) for a review of classic work
in the context of signal and image processing.)

Already in 2015, Faruqui et al. (2015) used a dictionary learning method to derive sparse latent
codes for word embeddings and argued that these latents were more interpretable than the original
embedding dimensions. More recently, a series of works beginning with Yun et al. (2021) have
applied dictionary learning to the internal representations of transformer-based language models.
Cunningham et al. (2023) suggested the use of sparse autoencoders (SAEs) and Templeton et al.
(2024); Gao et al. (2024) scaled sparse autoencoders to production-size large language models.

Templeton et al. (2024) showed that latent features learned by SAEs are often highly intepretable,
and that intervention on these features allows “steering” language models in predictable ways. How-
ever, as reported in Gao et al. (2024), even SAEs with extremely large numbers of latents suffer from
an apparently irreducible reconstruction error. According to Sharkey et al. (2025), understanding the
limitations of SAEs—and dictionary learning in general—is an important open question in the re-
search program of mechanistic interpretability. In the present work, we focus on answering some
basic questions that may help inform the analysis and design of these dictionary learning methods.

2 Contributions

To infer a latent representation y ∈ RN from an activation vector x ∈ Rd, sparse autoencoders use
an estimate like ŷ(x) = σ(Gx) for some learnable matrix G : RN×d and some simple non-linear
thresholding function σ. Meanwhile, the classical literature on compressive sensing is concerned
mainly with iterative methods for sparse inference. Throughout this paper, we will refer to autoen-
coder estimates as “one-step estimates.” It’s well-known that iterative methods can succeed at sparse
reconstruction problems where one-step estimates fail.

On one hand, it’s reasonable to expect that some kinds of “data” encoded by activation vectors
should be relatively easy to read. For example, it’s often found that linear functions of activation
vectors recover meaningful features, as in ? and ?. On the other hand, it’s not known whether all the
meaningful features coded by an activation vector can be read in this way. It is possible that some
features cannot be decoded by one-step estimates but can be decoded by another relatively simple
method?

In this work, we answer this question in a toy scenario designed to model the “very sparse” latents
learned by sparse autoencoders in practice. Our main contributions are the following.

1. We prove a theoretical guarantee on the performance of one-step methods and indicate
simple “rules of thumb” that hold in practice. (See Section 3.3.)
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Figure 2: An overview of the min-
imum codeword dimension d re-
quired for three different methods to
reliably decode a uniformly chosen
k-sparse subset of {1, . . . , 220} from
a superposition of Rademacher code-
words. Threshold and top-k decod-
ing are “one-step” methods used by
sparse autoencoders, while matching
pursuit is a simple iterative method.
The inverse “bitrate” d/H(k), where
H(k) = log2

(
N
k

)
≈ k log2(eN/k),

is indicated by the right axis.

2. We show empirically that the gap between one-step methods and the simplest iterative
methods is significant, even for very sparse latents. In comparison to a very naive and
efficient method called matching pursuit, one-step methods require the dimension d of the
superposition code to be larger by a constant factor. (See Section 3.4.)

From the perspective of coding theory, one natural measure for the efficiency of a sparse reconstruc-
tion method is its maximum allowable bitrate: that is, the ratio H/d between the entropy H of the
latent signal and the minimum dimension d of the code x = Fy from which y can be recovered. In
this language, matching pursuit requires only around 1.3 dimensions per bit, while one-step meth-
ods require upwards of 2.8. This rate increases quickly as y becomes less sparse; for a latent vector
y ∈ R65536 with 100 non-zero entries, one-step estimates require about 5 dimensions per bit. (See
Figure 2.)

How “efficient,” in terms of bitrate, are the codes used by real neural networks? Of course, it would
not make sense for a network to use a code that requires a costly iterative decoding process before it
can be used. However, the success of matching pursuit suggests that neural networks may be able to
improve over the bitrates of one-step estimates while paying a relatively small computational price.
Although our analysis is restricted to a toy scenario, we hope these results inform future work on
modeling distributed representations.

Related Work

Recently, various authors have studied the underperformance of SAEs and proposed ways to improve
these methods. For example, ? proposed gated SAEs to mitigate “feature shrinkage,” and ? proposed
Matryoska SAEs to deal with problems related to “feature absorption.”

Especially relevant to this work is the proposal of inference-time optimization (ITO), which involves
replacing the encoder of an SAE with an iterative optimization method at inference time—that is,
after the dictionary F has already been learned. For example, ? evaluated gradient pursuit as an
inference-time optimization method. However, if the restrictive encoders used by SAEs at training
time cannot discern certain codewords from noise, then these codewords will not appear in the
learned dictionary. This may explain the limited improvements attained so far by ITO. We hope the
present work helps clarify these questions, especially for readers who may not be familiar with ideas
from compressive sensing.

3 Encoding Sets with Superposition Codes

We begin by describing the toy scenario to be studied.
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Given a large number N, consider a map F that “encodes” each subset y ⊆ [N ] = {1, . . . , N} by a
linear combination

x =
∑
i∈y

fi ∈ Rd,

where the vectors {fi ∈ Rd : i ∈ [N ]} are chosen in advance and where the dimension d of the
encoding is expected to be much smaller than N. As above, we call the vectors fi codewords for the
elements of [N ] and call the image Fy a superposition code for the set y. It will often be useful to
view y as a vector in {0, 1}N with coefficients

yi =

{
1 : i ∈ y

0 : otherwise

and view F as a matrix of column vectors [f1 . . . fN ], called the dictionary. For simplicity, we’ll
model our subset as a random variable Y uniformly distributed over the subsets of some fixed size
k ≪ N.

As motivated by our earlier discussion, this work addresses the following question.
Question 1. When can Y be reliably decoded from the superposition code X = FY with the
methods used by sparse autoencoders? Can other computationally efficient methods do significantly
better?

Specifically, assuming the dictionary F is known, we’re interested in understanding how large the
dimension d needs to be as a function of (N, k) for a given inference method to recover Y. (We do
not study the problem of learning the dictionary.) Since Y is a discrete variable, we will focus on
conditions for exact recovery. We’ll also focus on a regime where Y resembles the very sparse latent
representations learned by sparse autoencoders trained on large language models. Gao et al. (2024)
discusses scaling the number of latent features on the order of N = 220 with sparsity on the order
of k = 28, so we use this as our reference.

To map vectors of activations to latent sparse representations—in our language, to infer X from Y —
sparse autoencoders essentially employ one-layer networks. For example, Templeton et al. (2024)
used a ReLU unit to estimate each coefficient of Y. Since the coefficients Yi in our toy scenario are
either 0 or 1, a natural analog would be a thresholding rule of the form

Ŷi(x) =

{
1 : ⟨λi, X⟩ ≥ 1

0 : otherwise

When the number k of non-zero coefficients is assumed beforehand, as it is in our scenario, we
can also choose the threshold adaptively so that only k of the Ŷi are non-zero. This is called top-k
decoding. Gao et al. (2024) showed that, in practice, top-k autoencoders perform better than their
ReLU variants. We refer to both approaches as “one-step estimates.”

On the other hand, the field of compressive sensing offers a vast literature on iterative methods
to recover a sparse vector from a linear projection. It is known that, in general, iterative methods
are much more reliable than one-step estimates. Indeed, the first iteration of an iterative shrinkage
method (see Chapter 6 of Elad (2010)) is formally identical to the kind of ReLU network employed
by Templeton et al. (2024). However, to our knowledge, a comparison of one-step estimates with
iterative methods in the very sparse regime encountered by sparse autoencoders has so far been
lacking.

The following sections are organized as follows.

• Section 3.1 reviews some basic ideas from information theory and introduces bitrate as a
measurement for the efficiency of an inference method.

• Section 3.2 reviews the idea of a matched filter and motivates the two one-step estimates
we will consider.

• Section 3.3 studies the reliability of one-step estimates when the dictionary F is random
and discusses the optimality of random dictionaries.

• Section 3.4 discusses the empirical performance of an iterative method called matching
pursuit.
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3.1 Information Theory Bounds

In practice, each dimension of the superposition code FY carries a finite amount of information
on the set Y. At best, the information that one dimension can store is determined by the number of
states in its numeric datatype—a 16 bit floating point can store nearly 16 bits, and so on. However,
under the moderate assumption that the projection FX can still be decoded after the addition of a
certain level of white noise, classic results from information theory put more realistic bounds on the
dimension of our encoding.
Proposition 1. For a given dictionary F ∈ Rd×N , suppose there exists a decoding map D so that

D(FY + Z) = Y

with probability at least (1− p), where Z is a vector of i.i.d. Gaussians with variance VZ . Suppose
additionally that the maximum variance of any coefficient of the code X = FY is VX . Define

C =
1

2
ln

(
1 +

VX

VZ

)
.

Then

d ≥ C−1

(
(1− p) ln

(
N

k

)
− ln 2

)
.

(See Section A for a standard proof.) When p is small and ln
(
N
k

)
is large, this means roughly that

the “bitrate”

R = log2

(
N

k

)/
d

cannot exceed the “channel capacity” C/ ln 2. (We alternate between measuring information in bits
and nats as convenient.) On the other hand, a classic result of information theory is that, as some
block size parameter goes to infinity, there exist arbitrarily reliable coding schemes that essentially
meet the channel capacity. Although we will not consider the condition of tolerance to Gaussian
noise considered in Proposition 1, the intuition of coding theory will be helpful in the following
analysis. For example, we will measure the minimum dimension d required for a certain inference
method to recover a latent state Y with entropy H in terms of the bitrate R = H/d.

It will also be useful to know the upper bound

H = ln

(
N

k

)
≤ k ln(eN/k) = k lnN − k ln k + k

on the entropy of a random k-element subset of [N ], which turns out to be a very good approximation
when k ≪ N. For example, when N = 220 and k = 28, the approximation

ln

(
220

28

)
≈ 28 ln(220e/28) = 128(1 + 12 ln 2)

holds with a relative error of only about 0.3%. (See Section B for a discussion of this estimate.)

3.2 Matched Filters and One-Step Estimates

Now, we turn to the problem of decoding a superposition code. Let’s begin by reviewing the simpler
problem of inferring a random scalar S from a sum

X = Sf + Z (1)

where f ∈ Rd is known but the “noise term” Z ∈ Rd is an unobserved Gaussian vector. In signal
processing, the problem of recovering an unobserved variable from a noisy process is known as
filtering.

In a linear system with Gaussian noise, like Equation (1), optimal filtering can be done using a linear
function of the measurement data. Specifically, suppose Z has mean zero and non-singular covari-
ance Σ, and define an inner product by ⟨v, w⟩Σ = xTΣ−1y. Then the posterior of S conditional on
X is determined by the function

λ(X) =
⟨f,X⟩Σ
∥f∥2Σ

,
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which we will call the matched filter for S. If S ∈ {0, 1} is a binary variable, a routine calculations
shows that the log odds of the posterior on S is given by

ln
P(S = 1|X = x)

P(S = 0|X = x)

= ρ

(
λ(x)− 1

2

)
+ ln

P(S = 1)

P(S = 0)
, (2)

where ρ = ∥f∥2Σ is the “signal-to-noise ratio” of the filter λ. See Section D for a review.

We now return to our original problem. Let’s focus on estimating just one scalar Yi from the sum

X = Yifi +
∑
j ̸=i

Yjfj .

The “noise term” here is not Gaussian, and the exact Bayesian posterior on Yi turns out to be in-
tractable in general. However, we can try to estimate Yi by approximating

∑
j ̸=i Yjfi by a Gaussian

vector of the same covariance. The corresponding matched filter for Yi can be understood as a kind
of least squares estimate.

In the following, let us assume that the codewords fi ∈ Rd are unit vectors. (It is natural for all
the codewords fi to have the same magnitude if each coefficient Yi needs to be encoded with the
same precision, as they do in our scenario.) If we assume further that the empirical distribution over
codewords fi is approximately isotropic, then the matched filter for Yi is approximately

λi(X) = ⟨fi, X⟩.

(If the distribution over codewords is not isotropic, we can first apply a linear transformation to
“whiten” the distribution of X.)

A one-step estimate is an estimate for Y that relies directly on the matched filters λi. From Equa-
tion (2), the maximum likelihood estimate for Yi under our simplified Gaussian model is 1 if

⟨fi, X⟩ ≥ 1

ρ
ln

P(Yi = 1)

P(Yi = 0)
+

1

2

and 0 otherwise. If we assume the signal-to-noise ratio ρ is very large, the decision boundary
becomes approximately 1/2. This leads to the simpler of the two one-step estimates that we will
consider.

Definition 1. Given X = FY, the threshold decoding is

Ŷi =

{
1 : ⟨fi, X⟩ ≥ 1/2

0 : otherwise.

On the other hand, if we know (or guess) the size k of the set Y in advance, the following is a
natural way to make use of that information. (In the context of sparse autoencoders, this method
was introduced by Makhzani & Frey (2014).)

Definition 2. Given X = FY, the top-k decoding is the set Ŷ of k elements whose codewords fi
have largest inner products with X. (Ties are broken arbitrarily.)

Note that whenever threshold decoding succeeds at recovering Y, top-k decoding succeeds as well.
Indeed, top-k decoding can be viewed as a kind of threshold decoding where the threshold is chosen
optimally as a function of X.

3.3 One-Step Estimates with Random Codewords

In this section, we show rigorously that one-step estimates are reliable so long as d = Ω(k lnN) and
the dictionary F is random. Our theoretical results agree with numerical experiments, and we find
that remarkably simple “rules of thumb” govern the performance of one-step estimates in practice.
(See Figure 3.)
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Figure 3: Empirical performance of threshold decoding (top) and top-k decoding (bottom) at the
problem of recovering a k-element subset of [N ] from a superposition of d-dimensional Rademacher
codewords. In the top row, we plot the relation d = 8k lnN . On the bottom, we plot d = 4k ln(kN)
and its lower bound of d = 4k lnN.

If inner products ⟨fi, fj⟩ between distinct codewords are “small enough” in some sense, then the
matched filters ⟨fi, X⟩ will be reliable and we can expect one-step estimates to succeed. Indeed,

⟨fi, X⟩ =

〈
fi,
∑
j

Yjfj

〉
=
∑
j

Yj⟨fi, fj⟩

= Yi +
∑
j ̸=i

Yj⟨fi, fj⟩︸ ︷︷ ︸
ξi

, (3)

where the total “crosstalk” ξi is a sum of either (k − 1) or k inner products ⟨fi, fj⟩.
One simple way to produce a dictionary of almost-orthogonal codewords is to choose them ran-
domly. For example, the following fact is representative of many similar results in high-dimensional
geometry.
Proposition 2. Let d > 2ϵ−2(2 lnN + ln p−1), and let

{F1, . . . , FN} ⊆ {−1/
√
d, 1/

√
d}d

be random vectors with independent, uniformly distributed entries. Then |⟨Fi, Fj⟩| < ϵ for all i ̸= j
with probability at least (1− p).

See Section C for a review.

Let’s call a pair (v, w) of vectors “ϵ-orthogonal” when |⟨v, w⟩| < ϵ. When all codewords are pair-
wise ϵ-orthogonal in the sense of Proposition 2, the crosstalk ξi in Equation (3) is bounded strictly
by ϵk in absolute value. Putting ϵ = k/2 gives the following corollary.

Corollary 1. Let d ≥ 8k2(2 lnN+ln p−1), and let F ∈ Rd×N be a dictionary of random codewords
in the conditions of Proposition 2. Then with probability at least (1 − p), every k-element subset
Y ⊆ [N ] is recovered from its superposition code FY by threshold decoding.

For fixed k, we conclude that the dimension d of our codewords only needs to grow as Ω(lnN).
However, the factor of 16k2 turns out to be very pessimistic; in practice, for almost all sets to be
reliably encoded, we only need d to grow linearly in k.

Proposition 3. Let F ∈ Rd×N be a Rademacher dictionary in the conditions above. Fix a k-element
set y ∈ [N ] and some p ∈ (0, 1). If

d ≥ 8k(lnN + ln p−1),
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then y is accurately recovered from the random variable X = Fy by threshold decoding with
probability at least (1− p).

As a heuristic guide for this result, consider the crosstalk ξi encountered by a matched filter ⟨fi, X⟩.
If we view the other (N − 1) codewords as random Rademacher vectors Fj , we find that each inner
product ⟨fi, Fj⟩ is a sum of d independent Rademacher variables scaled to have total variance 1/d.
It follows that the variance of ξi is at most k/d. To keep the power of this crosstalk below some fixed
threshold, it is enough for d to grow proportionally with k. For a full proof and a further discussion,
see Section F.

The prediction of Proposition 3 agrees well with numerical experiments, graphed in Figure 3. In fact,
even as N varies over several orders of magnitude, the slightly weaker condition d ≥ 8k lnN char-
acterizes the regime where the set Y can be decoded with reasonably high probability by threshold
decoding.

Top-k decoding performs significantly better but admits a similar “rule of thumb”: for all values
of N trialed, d = 4k ln kN is very close to the smallest dimension needed for top-k decoding to
succeed with high probability. See Section G for an informal derivation of this bound.

Finally, note that our analysis assumes the dictionary F is random. In principle, it could happen
that one-step estimates would perform more reliably if F were constructed differently. However,
based on numerical experiments detailed in Section E, we strongly suspect that the requirements on
d described in this section cannot be significantly relaxed so long as d remains a small fraction of
N.

3.4 Comparison with Compressive Sensing
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Figure 4: Empirical performance of
matching pursuit at the problem of
decoding a k-element subset of [N ]
from a superposition of d-dimensional
Rademacher codewords. Note the dif-
ference of vertical axis scale compared
to Figure 3. (For a side-by-side com-
parison, see Figure 2.) The bold line
shows the relation d = k log2(eN/k),
and the dotted line shows d =
1.3k log2(eN/k).

Together, Section 3.3 and Section E provide strong evidence that when k is a small fraction of N
and N is large, one-step estimates need at least d ≥ 4k lnN dimensions to read a subset from a
d-dimensional position code superposition code, even when the dictionary F is chosen optimally.
Recalling from Section 3.1 that the entropy H = log2

(
N
k

)
of a uniformly random k-sparse subset of

[N ] is bounded above by H ≤ k log2(eN/k), we conclude that a superposition code must employ
at least

d/H = 4k lnN

/
log2

(
N

k

)
≥ 4k lnN

k log2 (eN/k)
= 4 ln 2

(
1− ln k − 1

lnN

)−1

(4)

dimensions per bit to be read by a one-step estimate. (Note that 4 ln 2 ≈ 2.8.)

There are several ways to interpret this conclusion. On one hand, it means that one-step estimates
are asymptotically “inefficient” in terms of required bitrate when k is moderately large compared to
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N. More specifically, in a regime where N goes to infinity but ln k/ lnN converges to 1, we predict
that one-step estimates require the ratio d/H to diverge to infinity.

In particular, one-step estimates are asymptotically inefficient when k/N ≥ ϵ for some positive ϵ.
Indeed, to have d ≥ 4k lnN in this case we would need d = Ω(N ln(N)), while the entropy of Y
is only O(N). In contrast, a hallmark result of compressive sensing implies that, when k/N ≤ ϵ,
the vector y can be recovered from its image Fy under a random projection by a certain convex
optimization problem so long as d ≥ κ(ϵ)N for some constant κ(ϵ); for example, see Candes & Tao
(2005). The failure of our one-step estimates in this particular regime is easy to prove.

On the other hand, in a sparser regime where ln k/ lnN < ϵ for some ϵ < 1, it follows from our
analysis that one-step estimates are “information-efficient” in the sense that they can be decoded
from superposition codes that achieve bitrates H/d larger than some positive δ. However, it is also
of interest to have non-asymptotic information on the required bitrate. From Equation (4) we find
that one-step estimates need at least 4 ln 2 ≈ 2.8 bits per dimension even for small k. When k = 28

and N = 220 this number rises to about 4.1, and the experiments of Figure 3 show that this factor is
in fact slightly optimistic. If we use threshold decoding instead of top-k, we need 8 dimensions per
bit! Can other inference algorithms do significantly better?

There is an extensive literature on theory of compressive sensing. Reeves et al. (2019) shows
that, in our language, superposition codes with a random dictionary are essentially optimal in the
information-theoretic sense when ideal maximum-likelihood inference is used as the decoder. A
series of earlier works (Joseph & Barron (2012, 2014); Rush et al. (2017)) on superposition codes
also showed that, under some special conditions on y, certain decoding schemes admit bitrates up to
theoretical channel capacity in the presence of Gaussian noise. However, to our knowledge, practical
guarantees on the performance of iterative methods are not available for our range of k and N.

Figure 4 shows the results of a numerical experiment using an iterative method called matching pur-
suit, first suggested in Bergeaud & Mallat (1995). This is a simple “greedy” algorithm that initializes
y = 0 and, at each of k iterations, increments the index of y whose corresponding codeword has
largest inner product with x− Fy.

Matching pursuit far outperforms top-k decoding for the range of N and k considered earlier. When
d ≥ 1.3 log2(eN/k) and N > 216, our experiments show that matching pursuit is very reliable. In
other words, matching pursuit can reliably infer a sparse vector from just 1.3 dimensions per bit.
In Section H we find that a more computationally expensive algorithm called basis pursuit can do
slightly better, requiring only 0.8 dimensions per bit.

4 Conclusions and Future Work

Previous work showed that sparse autoencoders can help learn interpretable representations of the
activity inside a neural network. However, the success of these methods is limited for reasons that
are not yet well understood.

In this work, we have identified one point of view that might explain their limited success. In a toy
scenario, we showed that the simple estimates these models use to infer sparse representations are
much less “efficient,” in an information-theoretic sense, than a simple iterative method. This is true
even when the signal to be inferred is extremely sparse. To our knowledge, this kind of explicit,
non-asymptotic comparison was not previously available in the literature.

Of course, we do not suggest that the latent signal stored by a typical neural representation is well-
modeled as a uniformly random k-sparse subset. However, the “bitrate gap” between one-step es-
timates and matching pursuit opens a natural question: how much information can neural networks
typically encode in their internal activity? Can they, like matching pursuit, read around one bit of
mutual information from each neuron? If they can, our findings suggest that sparse autoencoders
may be fundamentally unable to decode their representations. Overall, we hope the point of view of
coding efficiency helps guide the interpretation of neural representations in future work.
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A Proof of Proposition 1

We restate Proposition 1 for convenience.
Proposition. For a given dictionary F ∈ Rd×N , suppose there exists a decoding map D so that

D(FY + Z) = Y

with probability at least (1 − p), where Z a vector of i.i.d. Gaussians with variance VZ . Suppose
additionally that the maximum variance of any coefficient of the code X = FY is VX . Define

C =
1

2
ln

(
1 +

VX

VZ

)
.

Then

d ≥ C−1

(
(1− p) ln

(
N

k

)
− ln 2

)
.

Proof. By results on the capacity of Gaussian channels (see Thomas & Joy (2006), Chapter 9) we
can bound the mutual information between X and X + Z as

I(X,X + Z) ≤ d

2
ln(1 + ρ)

where ρ = VX/VZ bounds the signal-to-noise ratio of each entry of X + Z.

Now, let D be a decoding in the conditions above. Then a relaxation of Fano’s inequality shows

I(Y,D(FY + Z)) ≥ (1− p) ln

(
N

k

)
− ln 2.

Since I(Y, FY + Z) ≥ I(Y,D(FY + Z)), we conclude that overall

d

2
ln

(
1 +

VX

VZ

)
≥ (1− p) ln

(
N

k

)
− ln 2.

B Estimates for the Binomial Coefficient

To estimate ln
(
N
k

)
, it is helpful to first remember the elementary inequalities(

N

k

)k

≤
(
N

k

)
≤
(
eN

k

)k

.

Taking logarithms gives

k ln(N/k) ≤ ln

(
N

k

)
≤ k ln(eN/k),

and so ln
(
N
k

)
= k ln(N/k) +O(k).

In this work, we use that the upper bound k ln(eN/k) is a very good approximation when k ≪ N .
To see why, substitute the leading-order Stirling approximation lnn! = n lnn − n + O(lnn) into
the binomial coefficient to obtain

ln

(
N

k

)
= (N − k) ln

(
N

N − k

)
+ k ln

(
N

k

)
+O(lnN).

Putting s = k/N , this simplifies to:

ln

(
N

k

)
= h(s)N +O(lnN),
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where
h(s) = −s ln s− (1− s) ln(1− s)

is the binary entropy function. For small s, note that

h(s) = −s ln s+ s+O(s2),

and so overall

ln

(
N

k

)
= k lnN − k ln k + k +O(s2N) +O(lnN).

In a regime where s = k/N converges to 0, we find that the estimate ln
(
N
k

)
≈ k ln(eN/k) is almost

optimal in the sense that

ln

(
N

k

)
= (k +O(1)) lnN − k ln k + (1 + o(1))k.

There is also a natural way to see this approximation from the point of view of coding theory.
Consider a random subset Y ⊆ [N ] where each element is included independently with probability
s = k/N . Then the entropy of Y is

H(Y ) = h(s)N = sN ln s−1 + sN +O(s2N)

= k ln(eN/k) +O(s2N),

the leading term of which matches our estimate for ln
(
N
k

)
.

C Review of Chernoff Bounds

The results of Section 3.3 rely on well-known facts about tails of independent sums of “sub-
Gaussian” distributions. Many references are available on this topic; for example, see Chapter
2 of Vershynin (2018). For completeness, here we provide an essentially self-contained proof of
Proposition 2 based on the Chernoff bound for a sum of Rademacher variables.

Given a random variable X, define the cumulant generating function KX(λ) as

KX(λ) = lnE exp(λX).

For example, the cumulant generating function of a unit Gaussian Z is KZ(λ) = λ2/2. Chernoff
bounds are the following upper bounds on the probability of the tail event X ≥ a in terms of the
cumulant generating function.
Proposition 4. For λ > 0, suppose KX(λ) exists. Then

ln P(X ≥ a) ≤ −λa+KX(λ).

Proof. By a Markov inequality,

P(X ≥ a) = P(eλX ≥ eλa)

≤ E exp(λX − λa)

= exp(−λa+KX(λ)).

For a unit Gaussian, this gives

ln P(Z ≥ a) ≤ −λa+
1

2
λ2.

Minimizing with respect to λ then gives

ln P(Z ≥ a) ≤ −1

2
a2.

In fact, this is the best possible leading-order term; by well-known bounds on Mills ratios,

P(Z ≥ a) = −1

2
a2 − ln a+O(1).
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Now, let Xn be a sum of independent Rademacher variables, each uniformly distributed over
{−1, 1}. We intuitively expect Xn/

√
n to be distributed like a unit Gaussian for large n, and so

we may hope that P(Xn/
√
n ≥ a) is similarly bounded as a function of a. A Chernoff bound lets

us formalize this.

For any variable with |X| ≤ 1, it is relatively easy to show that

KX(λ) ≤ λ2

2
.

For us, it is enough to know that this holds for the cumulant generating function KX(λ) = cosh(λ)
of a Rademacher variable. It follows that the same bound holds for a sum Xn of n independent
Rademachers scaled by 1/

√
n:

KXn/
√
n(λ) = n cosh(λ/

√
n) ≤ λ2

2
.

Therefore, for a > 0, we can bound the tail of Xn in exactly the way that we would bound the tail
of a Gaussian with standard deviation

√
n:

ln P(Xn ≥ a) = lnP(Xn/
√
n ≥ a/

√
n) ≤ − a2

2n
.

This gives us the tool we need to prove Proposition 2, restated here for convenience.
Proposition. Let d > 2ϵ−2(2 lnN + ln p−1), and let

{F1, . . . , FN} ⊆ {−1/
√
d, 1/

√
d}d

be random vectors with independent, uniformly distributed entries. Then |⟨Fi, Fj⟩| < ϵ for all i ̸= j
with probability at least (1− p).

Proof. Each inner product I = ⟨Fi, Fj⟩ is distributed like a sum of d Rademacher variables scaled
by 1/d. By the Chernoff bound above, we have that

ln P(I ≥ ϵ) = P(Xd/d ≥ ϵ) ≤ −d2ϵ2

2d
= −1

2
dϵ2.

By symmetry P(I ≥ ϵ) = P(I ≤ −ϵ), and so by a union bound

ln P(|⟨Fi, Fj⟩| ≥ ϵ) ≤ ln(2P(I ≥ ϵ)) ≤ −1

2
dϵ2 + ln 2.

To conclude that |⟨Fi, Fj⟩| < ϵ for all
(
N
2

)
< N2/2 pairs of vectors with probability at least 1 − p

by a union bound, it suffices that

−1

2
dϵ2 + ln 2 ≤ ln

p

N2/2

= −2 lnN + ln 2 + ln p,

which is equivalent to the condition on d above.

The interested reader should also compare this result to the Johnson-Lindenstrauss lemma, which
is proved in a very similar way. (See Dasgupta & Gupta (2003) for a proof, or the last section of
Foucart & Rauhut (2013) for a discussion of the JL lemma with some broader context.)

D Review of Matched Filters

Consider the problem of inferring a scalar S from the sum

X = Sf + Z

where f ∈ Rn and Z is a Gaussian variable independent from S. Suppose for simplicity that Z has
non-singular covariance Σ, so that − ln p(z) = 1/2∥z∥2Σ where

∥z∥2Σ = zTΣ−1z.
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Then a routine calculation shows that

− ln p(S = s|X = x)

= C(x)− ln p(s) +
1

2

(
s− ⟨f, x⟩Σ

∥f∥2Σ

)2

∥f∥2Σ (5)

where C(x) is a constant depending only on x and ⟨−,−⟩Σ is the inner product associated with
the norm ∥−∥Σ. In particular, the distribution of S conditional on X is only a function of the inner
product ⟨f,X⟩Σ. The matched filter for S is the linear function

λ(X) =
⟨f,X⟩Σ
∥f∥2Σ

,

and can be understood as providing the maximum likelihood estimate for S conditional on X under
a uniform improper prior.

The quality of our matched filter is measured by its signal-to-noise ratio (SNR)

ρ =
(λ(f))2

VarZ λ(Z)
= ∥f∥2Σ.

Up to a scalar, λ can be characterized as the linear function that maximizes this quantity. Under
an improper prior, Equation (5) shows the posterior distribution on S conditional on X is Gaussian
with mean λ(X) and precision ρ.

E Empirical Results on Dictionary Optimization

In Section 3.3, we considered the performance of threshold and top-k decodings at recovering a
subset from a superposition code with a random dictionary F . One natural question is whether these
one-step decodings can do better if the dictionary is optimized to reduce the scale of “crosstalk”
between distinct codewords.

Of course, when d ≥ N, we can make the codewords fi exactly orthogonal. For this reason, the
performance of one-step decodings shown in the left-most column of Figure 3 is much worse than is
possible; we never need more than N dimensions to store a latent vector of dimension N. However,
when the ratio d/N is small—say, smaller than 1/10—we conjecture that optimizing the dictionary
gives practically no improvement over a random initialization. Unfortunately, we are not aware of a
theoretical justification for this fact.

To understand our conjecture, recall the “crosstalk” terms

ξi =
∑
j ̸=i

Yj⟨fi, fj⟩.

For each i ∈ [N ], this is a sum of between k and (k − 1) numbers drawn without replacement from
the sequence

(⟨fi, fj⟩)j ̸=i.

Let’s fix the dictionary F and consider the empirical distribution defined by this sequence of N − 1
numbers. Suppose this distribution has zero mean and variance

γi(F ) =
1

N − 1

∑
j ̸=i

⟨fi, fj⟩2.

When k is moderately large but much smaller than N, we expect the crosstalk ξi to behave like a
centered Gaussian with variance kγi. Specifically, we expect that the probability of its tail events
with respect to the random set Y will be governed by the product kγi. If we assume that tail events
for the different variables ξi are “sufficiently independent,” we conclude overall that the typical value
of γi(F ) is the limiting factor for the reliability of one-step estimates.

A dictionary chosen to make the quantities γi uniformly smaller would, in particular, have smaller
average squared interference

γ(F ) =
1

N

N∑
i=1

γi =

(
n

2

)−1∑
i̸=j

⟨fi, fj⟩2

15



24 25 26 27 28 29 210

Embedding dimension (d)

2−12

2−10

2−8

2−6

2−4

O
p
ti

m
a
l
γ

N

64

128

256

512

1024

4096

2−6 2−5 2−4 2−3 2−2 2−1 20

Ratio d/N

2−4

2−3

2−2

2−1

20

21

R
a
ti

o
γ

o
p
t
/
γ

in
it

Figure 5: Top: The mean squared interference γ(F ) of a dictionary F obtained by running projected
gradient descent to convergence. The dotted line shows γinit = 1/d, the mean squared interference
attained in expectation by a random initialization. The best interference for N = 216 found by
gradient descent (not graphed) is nearly indistinguishable from the dotted line. Bottom: A plot of
ratio γopt/γinit by which gradient descent improves γ relative to its expected value at initialization
against the ratio d/N between codeword dimension and dictionary size.

between distinct codewords. For a random dictionary F, γ(F ) equals 1/d in expectation. Can we
decrease this value significantly by optimization?

Using projected gradient descent, we minimized γ(F ) subject to the constraint of maintaining unit
norm codewords. We tested dictionaries with between N = 64 and N = 216 = 65536 codewords
and with codeword dimensions between d = 16 and 1024. In each case, we initialized with a random
Rademacher dictionary and optimized to convergence with standard criteria. Our results are shown
in Figure 5 of Section E.

As d approaches N, we find that the optimal value γopt of γ(F ) converges to 0, as expected. On the
other hand, when d ≪ N, γopt is very close to 1/d, its expected value under a random initialization.
For example, with N = 216 (not plotted), the optimal value of γ(F ) is indistinguishable from 1/d
on a log-log plot.

Furthermore, we find a striking regularity. Empirically, the ratio γopt/d
−1 = dγopt between the

optimal value of γ and its expected value at initialization turns out to be a function of the relative
dimension d/N. Since this holds as N ranges over several orders of magnitude, it is natural to
believe it may hold in general.

Claim 1. For given (N, d), the optimal value of γ(F ) for a dictionary F ∈ Rd×N of unit norm
codewords iso

γopt(N, d) =
κ(d/N)

d

for some function κ. Furthermore, κ(r) is close to 1 for small values of r.
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If true, this means that the values γi(F ) governing the scale of crosstalk suffered by matched filters
can’t be made significantly smaller than 1/d when d ≤ ϵN for small ϵ.

We’re not aware of theoretical results in this direction. Note in particular that this is not obviously
related to work on sphere packing (see Cohn & Zhao (2014)) since we are interested in the scale of
the distribution of inner products rather than in maximum values.

F Proof of Proposition 3

We return to the proof of Proposition 3, restated here for convenience.
Proposition. Let F ∈ Rd×N be a Rademacher dictionary in the conditions above. Fix a k-element
set y ∈ [N ] and some p ∈ (0, 1). If

d ≥ 8k(lnN + ln p−1),

then y is accurately recovered from the random variable X = Fy by threshold decoding with
probability at least (1− p).

Proof. Where X1, X2, . . . is a sequence of independent Rademacher variables of unit variance,
denote

b(d, r) = P

(
d∑

i=1

Xi ≥
√
dr

)
.

By a Chernoff bound, we know that

ln b(d, r) ≤ −1

2
r2 (6)

holds uniformly over d.

Now, consider a dictionary F in the conditions above, and let us view its codewords Fi as random
vectors. Note that we can assume w.l.o.g. that y = {1, ..., k}, so that X = Fy = F1 + · · ·+ Fk.

Suppose that we apply threshold decoding with threshold τ, so that

Ŷi =

{
1 : ⟨Fi, X⟩ ≥ τ

0 : otherwise.

For i = 1, . . . , k, let Ai denote the event that yi = 1 ̸= Ŷi. Then

P(Ai) = P(⟨Fi, X⟩ < τ) = P

 k∑
j ̸=i
j=1

⟨Fi, Fj⟩ < τ − 1

 .

The sum above is distributed like a sum of (k − 1)d independent Rademacher variables scaled by
1/d. Overall,

P(Ai) = P

1

d

(k−1)d∑
i=1

Xi ≥ 1− τ


= b

(
(k − 1)d, (1− τ)

√
d

k − 1

)
.

Similarly, for i = k + 1, . . . , N, let Bi denote the event that yi is not correctly inferred. Then the
same reasoning shows

z P(Bi) = P(⟨Fi, F1 + · · ·+ Fk⟩ > τ)

= P

(
1

d

kd∑
i=1

Xi ≥ τ

)
= b

(
kd, τ

√
d

k

)
.
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Overall, using Equation (6), we have

P(Ai) ≤ exp

(
− (1− τ)2

2
· d

k − 1

)
≤ exp

(
− (1− τ)2

2
· d
k

)
and

P(Bi) ≤ exp

(
−τ2

2
· d
k

)
.

With τ = 1/2, the probability of failure is bounded as

P

(
k⋃

i=1

Ai ∪
N⋃

i=k+1

Bi

)
≤

k∑
i=1

P(Ai) +

N∑
i=k+1

P(Bi)

≤ k exp

(
− d

8k

)
+ (N − k) exp

(
− d

8k

)
= N exp

(
− d

8k

)
.

Setting this bound less than p and rearranging proves the theorem.

Note that Proposition 3 does not guarantee that any fixed dictionary can reliably encode many sets
y. However, the following corollary is easy to prove with a Markov inequality.
Corollary 2. Let F ∈ Rd×N be a Rademacher dictionary as above and let ϵ, p > 0. If

d ≥ 8k(lnN + ln(ϵp)−1),

then with probability at least (1 − p) it is true that at least (1 − ϵ)
(
N
k

)
subsets y are accurately

decoded from their images X = Fy by threshold decoding.

G Possible Extensions of Proposition 3

In practice, the numerical experiments reported in Section 3.3 show that threshold decoding succeeds
with little more than d = 8k lnN dimensions. In fact, it is likely possible to prove the conclusion
of Proposition 3 under slightly milder conditions by using a refinement of the Chernoff bound. For
example, recall from Section C that the actual probability of a Gaussian tail event Z ≥ a is

ln P(Z ≥ a) = −1

2
a2 − ln a+O(1),

which is slightly less than −1/2a2 for large a. (Note that, when d satisfies the conditions of Propo-
sition 3, the parameter a used in the Chernoff bound grows on the order of

√
lnN.)

Numerical experiments also showed that top-k decoding succeeds with only slightly more than
4k ln(kN) dimensions. We believe it is also possible to prove a bound to justify this empirical
observation.

To see how, let us denote Ai,j for the event that
⟨Fi, X⟩ ≥ ⟨FjX⟩.

Then top-k decoding succeeds so long as no event Ai,j holds for i ∈ {k + 1, . . . , N} and
j ∈ {1, . . . , k}. Each event is identically distributed, so by a union bound we conclude that top-
k decoding succeeds with probability at least (1− p) if

ln P(⟨Fk+1, X⟩ ≥ ⟨F1, X⟩) ≤ ln p− ln(k(N − k)).

Both inner products above have variance 1/d and are, in some sense, approximately independent.
We therefore expect that their difference can be approximated Gaussian variable with variance 2/d.
(This is the informal step of our argument.) A Chernoff bound would then give

ln P(⟨Fk+1, X⟩ − ⟨F1, X⟩ ≥ 0) ≤ −
√

d/2
2

2
= −d

4
.

In terms of d, this means we need only
d ≥ 4(ln(k(N − k)) + ln p−1)

≈ 4(ln(kN) + ln p−1).

Again, we expect that improving the Chernoff bound with lower-order terms would show that only
slightly more than 4k ln(kN) dimensions are enough.
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Figure 6: Empirical performance of basis pursuit decoding for N = 216. The bold line shows the
relation d = k log2(eN/k), and the dotted line shows d = 0.8k log2(eN/k).

H Empirical Results on Basis Pursuit Denoising

We used the implementation of LASSO regression available in sklearn Pedregosa et al. (2011) to
infer sparse subsets of {1, . . . , 216} from superposition codes by minimizing the objective

1

2d
∥x− F ŷ∥22 + 10−5∥ŷ∥1

with respect to ŷ. In compressive sensing, this is known as basis pursuit denoising (BPDN). Results
are graphed in Figure 6. Compared to the performance of matching pursuit shown in Figure 4, we
find that BPDN can recover a subset from even fewer dimensions; around 0.8 bits per dimension are
enough.
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