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Abstract

The well-known problem of low-rank matrix completion (LRMC) asks
to recover a subspace from a sample of points, with the complication
that some coordinates of each point may be hidden. Subspace clustering
with missing data (SCMD) is an extension of this problem for unions of
subspaces. In a recent work [OPAB+21], Ongie, Pimentel, and collabora-
tors proposed a way to transform SCMD into LRMC over a polynomial
transformation of the dataset, which they called low algebraic dimension
matrix completion (LADMC). Under some conditions, they showed that
the two problems were formally equivalent, allowing SCMD to be solved
by well-known techniques for LRMC.

We now suggest a simple improvement to LADMC called the Veronese
hitting subspace (VHS) problem. We focus on the limiting case where ar-
bitrary amounts of data are available, subject only to a bound r on the
number of coordinates available per data point. Given a generic union of
k subspaces of dimension d, SCMD is well-posed with r = d + 2. Based
on computational evidence, we conjecture that the VHS problem is for-
mally equivalent to SCMD for this value of r so long as kd < n. In
contrast, LADMC requires r ≈

√
kd coordinates per data point. In light

of this improvement, we propose the VHS method as a basis for new rank
minimization-based SCMD algorithms.

∗Some work by this author was performed in the scope of the MobiWise project (P2020
SAICTPAC/0011/2015), co-financed by COMPETE 2020, Portugal 2020—Operational Pro-
gram for Competitiveness and Internationalization (POCI), European Unions ERDF (Euro-
pean Regional Development Fund), and the Portuguese Foundation for Science and Technol-
ogy (FCT).
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1 Introduction

Suppose X =
󰀅
x1, . . . ,xm

󰀆
is a matrix of data points, some of whose

coordinates are not observed. How can we infer relationships in this kind
of “incomplete” dataset? Such questions are highly motivated by the
design of collaborative filtering systems, where incomplete reports from
many individual cases are combined “collaboratively” to learn about an
underlying distribution.

Let the “incomplete observation” of a data point xi be represented by
a linear equation πi(xi) = x̃i. If we believe that our data belongs to a
proper subspace of Rn, a natural way to complete X is to solve

minimize rankX

subject to ∀i, π(xi) = x̃i.

This problem, called low-rank matrix completion (LRMC), gives the best
policy for exact completion of a rank-deficient matrix. This problem has
received a large amount of research interest in the past 15 years, begin-
ning with the discovery of a convex relaxation (nuclear norm minimiza-
tion) that is formally equivalent to LRMC under practical assumptions
in [CR08] and [CT09]. This observation led to efficient iterative algo-
rithms, like [MGC11]. Methods not based on nuclear norm minimization
are also available; for example, see [MW11], which proposes an algorithm
to minimize Schatten p-norm of X.

Now, suppose our data is drawn from a union of subspaces. When we
observe all coordinates of each data point, the problem of reconstructing
the union of subspaces and labeling data points by subspace is called
subspace clustering (SC). When some coordinates of each data point could
be missing, as in LRMC, the reconstruction problem is called subspace
clustering with missing data (SCMD). Both SC and SCMD have been a
focus of study in the past decade. For a survey of recent SCMD techniques,
see [LBY+19].

One approach, developed by Ongie, Pimentel et al. in [PAOB+17] and
[OPAB+21], focuses on the fact that unions of subspaces are algebraic va-
rieties, and in fact are mapped into relatively low-dimensional subspaces
by polynomial feature maps with degree as low as two. Their main pro-
posal, low algebraic dimension matrix completion, is to “lift” an SCMD
problem to polynomial feature space and solve it with LRMC.

Let us take a moment to describe the LADMC method in more detail.
Define the “Veronese map”

η : Rn → R(
n+1
2 )

η(x1, . . . , xn) = (xixj)1≤i≤j≤n,

which is the “feature map” for the space of quadratic forms. A subspace
V ⊆ Rn of dimension d is mapped into a subspace of dimension

󰀃
d+1
2

󰀄
of

R(
n+1
2 ) by η, and so a union of subspaces is indeed sent into a relatively

low-dimensional subspace under η. Furthermore, if a data point x ∈ Rn

is observed at some subset of k coordinates, then
󰀃
k+1
2

󰀄
coordinates of

the monomial vector η(x) can be calculated. We are lead to pose the
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problem of choosing vectors yi ∈ R(
n+1
2 ), each agreeing with the known

coordinates of η(xi), such that the rank of
󰀅
y1, . . . ,ym

󰀆
is minimized.

If η(X) =
󰀅
η(x1), . . . , η(xn)

󰀆
happens to be obtained as the solution to

this problem, then the vectors xi can be recovered easily by solving the
equations η(xi) = yi.

However, it is not immediately clear when this rank minimization prob-
lem gives us the solution we want; it is possible for a vector yi to agree
with the known coordinates of η(xi) but not be of the form η(z) for any
z ∈ Rn. One perspective is to ask how many coordinates need to be ob-
served per data point in the original problem for η(X) to be recovered
via matrix rank minimization, assuming sufficiently many data points are
observed at sufficiently diverse subsets of coordinates. In [OPAB+21], the
answer was shown to be around

√
kd coordinates per data point. This is

a promising success but reveals LADMC to be sub-optimal; it is theoreti-
cally possible to infer our union of subspaces given only d+2 coordinates
per data point.

In this note, we propose an improved “lifting” strategy. In essence, our
idea is to constrain each column yi by all linear relations implied on η(xi)
by the observed coordinates of xi, some of which are not coordinate-wise
constraints. For example, if the first two coordinates of x = (x1, x2, . . . , xn)
are observed, then only three coordinates of η(x) are known—namely, x2

1,
x1x2, and x2

2—but we also know the ratios between x1xi and x2xi for all
i > 2, which amounts to an additional n−2 linear relations. Although we
do not consider the problem of implementing a numerical method here,
various LRMC algorithms can be modified to use these slightly more gen-
eral constraints on columns.

Our analysis is simplified by the introduction of a new problem for-
mulation, which we call the hitting subspace problem, leading us to call
our method the Veronese hitting subspace (VHS) method. The conditions
under which η(X) is a solution to the VHS problem are not yet fully un-
derstood. However, computational evidence gives some reason to believe
this occurs if d + 2 coordinates per data point are given in the original
dataset, assuming (as in Ongie’s paper) that the dataset was sufficiently
large and diverse. If true, the VHS problem provides a formally equivalent
relaxation to SCMD that retains optimal economy in the coordinates per
data point metric. We propose that the VHS method is worth investigat-
ing to develop new methods for SCMD.
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2 The Hitting Subspace Problem

Definition 1. Let W be a family of subspaces in Rn. A hitting subspace
for W is a subspace V of Rn so that

∀W ∈ W, dimV ∩W ≥ 1.

The hitting subspace problem is to find a hitting subspace for W with
smallest possible dimension.

We have named this in analogy with the hitting set problem, especially
well-known in computer science, which asks to find a set V of minimum
cardinality which intersects each member of a family W of finite sets.

Generically, LRMC can be interpreted as a special case of the hitting
subspace problem. Indeed, the observed entries of a certain column x,
encoded as a linear constraint π(x) = x̃, simply force the column space
V of our matrix to intersect the affine space π−1(x̃). Assuming that
kerπ intersects V trivially, this is equivalent to V inciding in W = 〈x〉+
kerπ. Thus, assuming that the coordinate projection associated with
each column is injective on V , low-rank matrix completion is essentially
equivalent to a hitting subspace problem. The converse is not true since
an incident subspace W in a hitting subspace problem need not be of the
form 〈x〉+ kerπ for a coordinate projection π.

Let Grk be the Grassmannian manifold of k-dimensional subspaces in
Rn. This is an algebraic variety and a homogeneous space of dimension
k(n− k). The condition of intersecting another subspace W non-trivially
gives an algebraic constraint on Grk.

Definition 2. Given W ⊆ Rn, let Indk(W ) be the set

Indk(W ) = {V ∈ Grk : dimV ∩W ≥ 1}.

Let d be the dimension of W . Indk(W ) is a proper subvariety of Grk
exactly when k+d ≤ n. In the algebraic geometry literature, Indk(W ) is a
special case of a Schubert variety. The following proposition characterizes
the geometry of Indk(W ) around a point V where dimV ∩W = 1.

Proposition 1. There is a (natural) isomorphism

TV Grk ∼= Hom(V,Rn/V ).

Let V ∈ Indk(W ) with dimV ∩ W = 1. Then Indk(W ) is a regular
submanifold around V , and under the isomorphism above,

TV Indk(W ) = {f : f(V ∩W ) ⊆ W/V }.

In particular,

codimTV Indk(W ) = codimW/V = n− k − d+ 1.

A proof of Proposition 1 is available in the Appendix.
For our purposes, it will be slightly more useful to think of Proposition

1 in terms of dual spaces. (Recall in that, when V ⊆ Rn is any subspace,
V 0 ⊆ (Rn)∗ is the annihilator subspace of functionals vanishing on V .)
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Corollary 1. There is a natural isomorphism

T ∗
V Grk ∼= V ⊗ V 0.

Under this isomorphism, for V ∈ Indk(W ) with dimV ∩W = 1,

[TV Indk(W )]0 ∼= (V ∩W )⊗ (V 0 ∩W 0).

This local characterization of the sets Indk(W ) lets us define the fol-
lowing well-posedness condition for a hitting subspace problem.

Definition 3. Let W be a family of subspaces. A k-dimensional subspace
V is transversally determined by W when

󰁟

W∈W
dimW∩V =1

TV Indk(W ) = {0}.

Concretely, this means that

V ⊗ V 0 =
󰁛

W∈W
dimW∩V =1

(V ∩W )⊗ (V 0 ∩W 0).

If V is transversally determined, then V is at least a unique local
solution to the hitting subspace problem. Although it is possible for V to
be a unique solution without being transversally determined, we will focus
on transversally determined solutions here. We believe that this does not
limit our analysis significantly.

Let us investigate the transversal determinacy of an LRMC problem.
In this case, the incident subspaces W are of the form 〈x〉 + K, where
x is an element of V and K is a kernel of some coordinate projection.
Specifically, we will consider coordinate projections with a fixed rank r.

Definition 4. Let Kr be the family of subspaces generated by sets of r−n
distinct basis vectors of Rn.

For V to be transversally determined by any collection of incident
subspaces of the form we have described, it must of course be transversally
determined by the whole family

{〈x〉+K : x ∈ V,K ∈ Kr}.

In this case, we will say that V is transversally determined in the sampling
limit, given r observed coordinates per data point.

Informally, the most we can learn about V by observing its image
modulo K is the space V 0 ∩ K0 of linear relations that hold on V and
factor through the quotient map Rn → Rn/K. If the whole annihilator
V 0 can be recovered by summing together these intersections as K runs
over a family K, we will say that V is “identifiable” under K.

Definition 5. The subspace V ⊆ U is identifiable by a family K when

V 0 =
󰁛

K∈K

V 0 ∩K0.
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In fact, is it straightforward to see that this notion of identifiability
exactly characterizes transversal determinacy of an LRMC-type problem
in the sampling limit.

Proposition 2. Let K be a family of subspaces with V ∩ K = 0 for all
K ∈ K. Then V is transversally determined by the family

{〈x〉+K : x ∈ V,K ∈ K}

iff V is identifiable by the family K.

Proof. For each x and K,

[TV Indk(〈x〉+K)]0 = (V ∩ (〈x〉+K))⊗ (V 0 ∩ (〈x〉+K)0)

= 〈x〉 ⊗ (V + 〈x〉+K)0 = 〈x〉 ⊗ (V 0 ∩K0).

Such subspaces span all of V ⊗ V 0 iff V is identifiable under K.

It is easy to see that a generic subspace V ⊆ Rn of dimension d < n
is identifiable under Kr exactly when d < r, and so, in the sampling
limit, LRMC is well-posed in the sense of transversal determinacy under
exactly this condition. In fact, even without the tools we have introduced
in this section, it is simple to argue that a generic subspace V of dimension
d < r will be the unique subspace of minimum dimension agreeing with its
images modulo each element of Kr. However, transversal determinacy is a
convenient tool to investigate well-posedness of hitting subspace problems
that are not in the LRMC form, as will be the case of the VHS problem.

3 Hitting Subspace Relaxations of SCMD

Let Λ = V1 ∪ . . . ∪ Vk be a union of subspaces. For simplicity, we assume
that every subspace has the same dimension d. Additionally, we suppose
that the subspaces Vi are chosen “generically,” meaning that we may
exclude proper Zariski-closed sets of configurations from consideration.

Suppose points are sampled from Λ but observed modulo elements
of Kr for some r < n. The problem of subspace clustering with missing
data (SCMD) is to recover Λ from this information. In this section, we
propose the new Veronese hitting subspace problem and recall its prede-
cessor, LADMC. Both of these are attempts to encode SCMD as a hit-
ting subspace problem over a higher-dimensional ambient space—namely,
the feature space of quadratic forms on Rn. Although higher-order fea-
ture spaces were considered in [OPAB+21], we restrict our focus to the
quadratic case for simplicity.

We begin with some definitions.

Definition 6. When V is a vector space, let SV be the symmetric tensor
product V ⊗ V , and define

η : V → SV

η(x) = x⊗ x.
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When f : V → W is a linear map, let Sf : SV → SW be the unique linear
map satisfying the equation

(Sf)(η(x)) = η(f(x))

Let {e1, . . . , en} be a basis for V and {ei ⊗ ej : 1 ≤ i ≤ j ≤ n} be a
basis for SV . Then we can express η in coordinates as

η(x1e1 + . . .+ xnen) =
󰁛

1≤i≤j≤n

xixjei ⊗ ej .

The map η is the “feature map” for quadratic forms over V , in the sense
that any quadratic form q : V → R equals a composition λ◦η for a unique
linear map λ : SV → R. Note also that elements in the image of η—
the simple tensors—generate SV . Meanwhile, Sf is characterized by the
equations

(Sf)(ei ⊗ ej) = f(ei)⊗ f(ej).

Note also that our definitions make S a covariant functor. Using S, we
now define two natural ways to transform a subspace V ⊆ Rn into a
subspace of SRn.

Definition 7. When V is a subspace of Rn with inclusion ιV : V → Rn

and projection πV : Rn → Rn/V , define

S(V ) = imSιV , Q(V ) = kerSπV .

Note that the maps SιV and SπV participate in the following commu-
tative diagram.

V Rn Rn/V

SV SRn S(Rn/V )

η η η

ιV πV

SιV SπV

By inspection of this diagram, we find that S(V ) ⊆ Q(V ); indeed, S(V ) is
spanned by elements of the form η(v) for v ∈ V , but every such element
is mapped to zero by SπV because SπV (η(v)) = η(πV (v)) = 0. However,
this inclusion is proper when V is proper and non-zero, which we can see
by examining these two subspaces in coordinates; when {e1, . . . , en} is a
basis for Rn such that {e1, . . . , ek} is a basis for V ,

S(V ) = 〈ei ⊗ ei : 1 ≤ i, j ≤ k〉, while
Q(V ) = 〈ei ⊗ ej : 1 ≤ i ≤ k ∨ 1 ≤ j ≤ k〉.

Thus, when dimV = k, we have

dimS(V ) =

󰀣
k + 1

2

󰀤
, dimQ(V ) =

󰀣
k + 1

2

󰀤
+ k(n− k).

Viewing the dual space (SRn)∗ as the quadratic forms on Rn, the
annihilator S(V )0 consists of the forms which vanish on V , while Q(V )0

has the forms that are constant along the cosets of V . It is also helpful
to note that, identifying (SRn)∗ ∼= S(Rn)∗, we have S(V 0) = Q(V )0.
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Finally, we describe the relevance of the quadratic feature space to
the study of unions of subspaces. When V ⊆ SRn is a subspace, η−1(V)
can be understood as the loci of a family of quadratic polynomials on Rn.
Let us call this a quadratic set. As it turns out, unions of subspaces
in Rn are frequently quadratic sets. For example, we have the following
sufficient condition.

Proposition 3. A union Λ = V1 ∪ . . .∪Vk of d-dimensional subspaces in
general position is a quadratic set if n ≥ kd.

Proof of Proposition 3. Any hyperplane or union of two hyperplanes is
the zero set of some quadratic form. From this, we deduce easily that any
subspace or union of two subspaces is a quadratic set.

Suppose now that k > 2. For each i = 1, . . . , k, define

Λi = Vi ∪
󰁛

j ∕=i

Vj .

We claim that Λ =
󰁗

i Λi. An intersection of quadratic sets is a quadratic
set, so this will prove the theorem.

It is clear that Λ ⊆
󰁗

i Λi. On the other hand, if x ∈
󰁗

i Λi but x ∕∈ Λ,
then

x ∈
󰁟

i

󰁛

j ∕=i

Vj .

In particular, x ∈
󰁓

i Vi. By hypothesis that none of the subspaces Vi

intersect (generically true) and that n ≥ kd, we can find a basis for
󰁓

i Vi

that partitions into bases for each subspace Vi. If x ∈
󰁓

j ∕=i Vj for a given
i, then the coefficients of x in the basis vectors for Vi are zero. Since this
is true for each i, we conclude that x = 0, which is a contradiction. This
proves that

󰁗
i Λi ⊆ Λ, so indeed Λ =

󰁗
i Λi.

Now, we return to the problem of SCMD. When the union Λ is a
quadratic set, as in the previous proposition, it is fully encoded by the
subspace V = 〈η(Λ)〉. It is also obvious that, when enough vectors {xi} are
sampled in general position from Λ, V will be the linear span of {η(xi)}.
How can we recover V when the points xi are only observed at some
coordinates, encoded by the equations πi(xi) = x̃i?

The idea of recovering a union of subspaces by fitting a subspace to
a polynomial transformation of a dataset was introduced in [VMS03] and
is known as generalized principal component analysis. However, GPCA
cannot be applied easily in the case of partially observed data. We are
led to pose the harder problem of determining a minimal-dimensional
subspace V that has non-trivial intersection with each image η(xi+kerπi).
This was done in [OWNB17], and an algorithm to solve such problems was
proposed. However, there may be a computational benefit in relaxing our
optimization problem to one of an LRMC or hitting subspace type, for
which many effective algorithms are available.

This idea, in the form of LADMC, was defined first in [PAOB+17] and
later clarified in [OPAB+21]. In our language, the LADMC problem can
be stated in the following way.
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Definition 8. Low algebraic dimension matrix completion (LADMC)
is the low-rank matrix completion problem for the matrix [y1, . . . ,ym],
with columns yi ∈ SRn, subject to the equations

Sπi(yi) = η(x̃i), i = 1, . . . ,m.

If we assume that the projections Sπi are injective on V, then LADMC
can also be understood as the hitting subspace problem for the subspaces

〈η(xi)〉+ kerSπi = 〈η(xi)〉+Q(kerπi).

In fact, we will see in Proposition 6 that LADMC cannot succeed in a
regime where the projections Sπi are not injective on V, so this conversion
to a hitting subspace problem is justified. On the other hand, from the
point of view of hitting subspace problems, the following problem—our
original suggestion—arises as the tightest possible hitting subspace-type
relaxation of the constraints that V intersect the sets η(〈xi〉+kerπi) non-
trivially.

Definition 9. The Veronese hitting subspace (VHS) problem is the
hitting subspace problem for the family

{S(〈xi〉+ kerπi) : i = 1, . . . ,m}.

For any K = kerπ, note that

S(〈x〉+K) ⊆ 〈η(x)〉+Q(K),

since the right-hand side are the solutions y to the equation

Sπ(y) = Sπ(η(x)),

while the left-hand side is generated by elements of the form η(z) with z
satisfying π(z) = π(x). Thus, LADMC is a relaxation of VHS. Indeed, let
K ∈ Kr be (n − r)-dimensional. Then the incident subspace S(〈x〉 +K)
used by the VHS problem will have codimension

dimS(〈x〉+K)0 = dimQ((〈x〉+K)0) =

󰀣
r

2

󰀤
+ (r − 1)(n− r + 1).

in SRn. By comparison, the incident subspace 〈η(x)〉 + Q(K) used by
LADMC has only codimension

dimQ(K)0 − 1 = dimS(K0)− 1 =

󰀣
r + 1

2

󰀤
− 1 =

󰀣
r

2

󰀤
+ r − 1.

From our discussion in Section 2—specifically, Proposition 1—we know
that an incident subspace of codimension c will constrain V by

max{c+ 1− dimV, 0}

degrees of freedom. Thus, the extra (r−1)(n−r) codimensions possessed
by the subspaces S(〈x〉 + K) may give the VHS method a significant
advantage over LRMC.

However, we have not yet been able to clarify the VHS problem’s
advantage rigorously. In the next section, we present all that is currently
known.
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4 Questions and Partial Results

As in our simple analysis of LRMC in Section 2, we consider the problem
of success in the “sampling limit.” That is, we ask how many coordinates
must be observed per data point for either LADMC or the VHS problem
to be well-posed (in the sense of transversal determinacy) if arbitrarily
many data points are observed with each possible subset of coordinates.

Definition 10. For an arbitrary set Λ ⊆ Rn, and let V = 〈η(Λ)〉.

1. VHS(Λ) is the smallest r ∈ {1, . . . , n} for which V is transversally
determined by

{S(〈x〉+K) : K ∈ Kr,x ∈ Λ}.

2. LADMC(Λ) is the smallest r ∈ {1, . . . , n} for which V is transver-
sally determined by

{〈η(x)〉+Q(K) : K ∈ Kr,x ∈ Λ}.

In the trivial case where r = n, both the VHS problem and LADMC
obviously transversally determine V. Furthermore, if either problem is
determined with K running over Kr, it is also determined with K run-
ning over Kr′ for any r′ ≥ r. Thus, the functions VHS and LADMC
are well-defined and fully characterize the behavior of our problems in the
sampling limit. However, while unknown coordinates of data points can be
completed so long as V is transversally determined—since by assumption
of transversal determinacy the incident subspace of SRn corresponding to
each data point has one-dimensional intersection with V—the union Λ it-
self cannot necessarily be inferred from V without additional assumptions.
One sufficient assumption is that Λ is a quadratic set, as defined above.
To understand the theoretical applicability of our subspace hitting-based
methods, we propose the following questions.

Question 1. When is the union of subspaces Λ a quadratic set?

Question 2. For Λ a quadratic set, what are LADMC(Λ) and VHS(Λ)?

In answer to Question 1, we have only our sufficient condition of kd ≤ n
in Proposition 3. Question 2 is the topic of the rest of this section.

Let us begin with an easier question, the answer to which we under-
stand well: for what value of r is recovery of Λ from a partially observed
dataset possible in the sampling limit by any method? In other words,
when is Λ determined by its images under rank-r coordinate projections?
Every such image is trivial when r ≤ d, so inference is impossible unless
r > d. On the other hand, the following proposition shows that r = d+2
is already enough.

Proposition 4. Let Λ = V1∪ . . .∪Vk be a generic union of d-dimensional
subspaces. There is a fixed function that, given the images of Λ under
every subspace in Kd+2, returns Λ.

For simplicity we assume in the following proof that this function de-
pends on k and d. Obviously, this restriction can be lifted.
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Proof. For each coordinate subspace K, let πK be the projection modulo
K. For each K ∈ Kd+1, let H(K) = π−1

K (πK(Λ)), which is a union
of k hyperplanes in Rn. Each hyperplane of H(K) contains a unique
subspace Vi. Given two coordinate subspaces K,L ∈ Kd+1, construct a
bijection ρLK : H(K) → H(L) by putting hyperplanes that contain the
same subspaces in correspondence.

Together, the sets H(K) for K ∈ Kd+1 and the bijections ρLK for
K,L ∈ Kd+1 determine Λ, since

Λ =
󰁞

W∈H(K)

󰁟

L∈Kd+1

ρLK(W ).

It is obvious that the images of Λ modulo elements of Kd+1 are determined
by its images modulo elements of Kd+2. To conclude the proof, it remains
to argue that the assignments ρLK are also determined by this information.

Suppose K and L differ in only one basis vector so that K∩L ∈ Kd+2.
Then ρLK can be determined from the image πK∩L(Λ) by corresponding
hyperplanes that are images of the same subspace of πK∩L(Λ) under the
natural projections

Rn/(K ∩ L)

Rn/K Rn/L .

Since the whole set Kd+1 is spanned by paths whose edges connect pairs
of coordinate subspaces differing in one coordinate, we are done.

When d = 1 and k ≥ 3, it can be argued that no fewer than d+ 2 = 3
coordinates per data point let us reconstruct the union. However, due to
computational experiments described below, we believe the statement of
the previous proposition remains true with Kd+1 instead of Kd+2 when
d ≥ 2.

We now return to Question 2. How do LADMC(Λ) and VHS(Λ)
compare to the essentially ideal value of d + 2? Our first result is that
LADMC(Λ) ≈ min{

√
kd, n} for any generic union of subspaces. This was

already shown in [OPAB+21]. Furthermore, since the hitting subspaces
used in the VHS problem are strictly smaller than those used in LADMC,
it is clear that VHS(Λ) ≤ LADMC(Λ). Unfortunately, we were not able
to prove a better bound on VHS(Λ). In particular, the kind of argument
used for LADMC does not seem to generalize to the VHS problem. How-
ever, based on computer verification of transversal determinacy in simple
cases, we conjecture VHS(Λ) ≤ d+ 2 so long as kd ≤ n.

We begin with LADMC. As a problem of LRMC type, it is amenable
to the kind of analysis we performed in Section 2.

Proposition 5. LADMC(Λ) ≤ r if and only if V is identifiable under

Q(Kr) = {Q(K) : K ∈ Kr}

and SπK is injective on V for each K ∈ Kr.
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Proof. LADMC(Λ) ≤ r when V is transversally determined under

Fr = {〈η(x)〉+Q(K) : K ∈ Kr,x ∈ Λ},

meaning that
󰁛

W∈Fr
dimW∩V=1

(V ∩W )⊗ (V0 ∩W 0) = V ⊗ V0.

Let W = 〈η(x)〉+Q(K). Since η(x) ∈ V,

W ∩ V = (〈η(x)〉+Q(K)) ∩ V = 〈η(x)〉

exactly when Q(K) has zero-dimensional intersection with V, meaning
SπK is injective on V. Furthermore, by genericity, this holds for one
subspace K ∈ Kr exactly when it holds for all of them. In this case, we
have (as in the proof of Proposition 2) that

V ∩W ⊗ (V0 ∩W 0) = 〈η(x)〉 ⊗Q(K)0.

These subspaces span V ⊗ V0 exactly when V is Q(Kr)-identifiable.

The injectivity of SπK on V is necessary for transversal determinacy.
Assuming this holds, we have shown that Λ can be recovered from its rank-
r projections by LADMC exactly when the space V0 of quadratic relations
holding on Λ is generated by polynomials involving r coordinates.

When does this happen? Since

V = 〈η(Λ)〉 = S(V1) + . . .+ S(Vk),

we know that dimV ≤ k
󰀃
d+1
2

󰀄
. Thus, the image of V under Sπ is proper,

for a projection π onto r coordinates, so long as k
󰀃
d+1
2

󰀄
<

󰀃
r+1
2

󰀄
. In this

case, at least one polynomial involving r coordinates exists in V0. Actu-
ally, an argument first introduced in [PAOB+17] shows that V is Q(Kr)-
identifiable in essentially this situation. We reproduce it here, with slightly
different language. A proof can be found in the Appendix.

Proposition 6. Suppose 2d ≤ r ≤ n. If V is Q(Kr)-identifiable, then

k

󰀣
d+ 1

2

󰀤
<

󰀣
r + 1

2

󰀤
. (1)

Conversely, if (1) holds as a non-strict inequality, then V is Q(Kr′)-
identifiable for r′ = min{r + 2, n}.

From this it follows that LADMC(Λ) ≈ min{
√
kd, n} for large k and d.

Also note that, while the definition of LADMC(Λ) involves the dimension
n of the ambient space of Λ, LADMC(Λ) essentially does not depend on
n when k

󰀃
d+1
2

󰀄
<

󰀃
n+1
2

󰀄
, and in particular when kd ≤ n.

Next we turn to the case of VHS, which is our original contribution.
Using our criteria for transversal determinacy, we wrote a small program
in the Julia language to experimentally compute VHS(Λ) for small ran-
domly generated unions Λ.1 We found, for example, the following values

1Source is available here: https://github.com/cgadski/vhs_number.
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of VHS(Λ) when Λ is a union of k subspaces of dimension d in Rkd. (Our
program is not yet well optimized and was unable to compute some posi-
tions of the following table, which we have left blank.)

k d

1 2 3 4 5 6

1 2 3 4 5 6 7
2 2 3 4 5 6 7
3 3 3 4 5 6
4 3 3 4 5
5 3 3 4
6 3 3

Compare this with the lower bounds for LADMC(Λ) that follow from
Proposition 6—namely, the smallest values r for which

󰀃
r+1
2

󰀄
> k

󰀃
d+1
2

󰀄
,

and for which 2d ≤ r.

k d

1 2 3 4 5 6

1 2
2 2
3 3 4 6 8 10
4 3 5 7 9
5 3 6 8
6 4 6

Apparently, VHS(Λ) does not grow with k like LADMC(Λ) does. Our con-
jecture is that the behavior we have observed experimentally generalizes
for all k, d, and n.

Conjecture 1. When kd ≤ n, VHS(Λ) ≤ d+ 2.

One possible approach to characterizing VHS(Λ) is to relate it to
identifiability of V under some family of subspaces, as we did above for
LADMC(Λ). Unfortunately, unlike LADMC, the VHS problem is not of
LRMC type. However, note that

S(〈x〉+K) ⊇ 〈η(x)〉+ S(K),

so VHS(Λ) ≤ r implies V being identifiable under the family

S(Kr) = {S(K) : K ∈ Kr}.

Proposition 7. If VHS(Λ) ≤ r, then Λ is S(Kr)-identifiable.

As the following proposition shows, S(Kr)-identifiability can be char-
acterized in a similar way to O(Kr)-identifiability. (A proof is deferred
to the Appendix.) Unfortunately, S(Kr)-identifiability turns out to be
vacuous for large n, so nothing like the converse to Proposition 7 can hold
in general. The best we can say is that Proposition 7 does not rule out
our conjecture, since V will be S(Kd+2)-identifiable for d + 2 ≤ n when
n ≥ (k + 1)d/2, which is true whenever n ≥ kd.

13



Proposition 8. If 〈η(Λ)〉 is S(Kr)-identifiable, then

k

󰀣
d+ 1

2

󰀤
<

󰀣
r + 1

2

󰀤
+ r(n− r). (2)

Conversely, if (2) holds as a non-strict inequality, then V is S(Kr′)-
identifiable with r′ = min{r+1, n}. In particular, V is S(Kd+2)-identifiable
as long as n ≥ (k + 1)d/2 and d+ 2 ≤ n.

5 Conclusions and Future Work

In this paper, we introduced the VHS method as a potential tool for new
SCMD algorithms. Our suggestion is based on a problem formulation (the
hitting subspace problem) that can be viewed as a generalization of LRMC
to the case of arbitrary linear constraints per data point. Based on a well-
posedness criterion for the hitting subspace problem, we considered the
question of how many coordinates per data point the VHS method needs
to succeed at SCMD with enough samples. Based on a computational
experiment, we have conjectured that this number may be essentially
the smallest possible, which would improve significantly on the results
previously obtained for LADMC.

We propose two topics for further inquiry based on our work. First, our
conjecture on the function VHS(Λ) could be explored, providing more con-
crete guarantees on the success of the VHS method. Second, our method
could be paired with software to solve the underlying hitting subspace
problem, and the success of our method on SCMD problems in practice
could be explored. Computational experiments were already performed
on LADMC in [OPAB+21] and had favorable results, and a VHS method-
based algorithm should not do worse. A key question on this front is
whether our ideal limit of d+2 coordinates per data point is sufficient for
VHS-based inference in problems of moderate size; transversal determi-
nacy might not be enough for practical rank minimization algorithms to
succeed.

Appendix: Proofs

Proof of Proposition 1. Recall that W ⊆ Rn is a subspace of dimension d
and V ⊆ Rn is a subspace of dimension k.

Consider the action of GL(n) on Grk by direct images, and let

ϕV : GL(n) → Grk

be the map g 󰀁→ gV . At the identity, the differential dϕV is a surjective
map from Hom(Rn,Rn) onto TV Grk. It is also easy to see that its kernel
coincides with the maps f that stabilize V in the sense that f(V ) ⊆ V .
Where ιV and πV are the inclusion and projection maps for V , ker dϕV

is also the kernel of the map

ηV : Hom(Rn,Rn) → Hom(V,Rn/V )

ηV (f) = πV ◦ f ◦ ιV .
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This establishes an isomorphism TV Grk ∼= Hom(V,Rn/V ) as the unique
linear map completing the diagram

Hom(Rn,Rn) Hom(V,Rn/V )

TV Grk .

ηV

dϕV

Now, let ℓ = n− k − d+ 1, and let

{v1, . . . , vk, w2, . . . , wd, x1, . . . , xℓ}

be a basis for Rn such that {v1, . . . , vk} is a basis for V and {v1, w2, . . . , wd}
is a basis for W . We will interpret the subspaces V and W as multivectors,
putting V = v1 ∧ . . . ∧ vk and W = v1 ∧ w2 ∧ . . . ∧ wd, and define

F : GL(n) → Λk+d(Rn)

F (g) = gV ∧W.

For g ∈ GL(n), we have ϕV (g) ∈ Indk(W ) exactly when F (g) = 0. Ac-
tually, in a neighborhood of the identity e ∈ GL(n), it is enough for the
coefficients of the multivectors bi = xi ∧ V ∧W to vanish from F (g), con-
sidering the basis for Λk+d(Rn) associated with our basis for Rn. Indeed,
the projection of F (g) onto bi is non-zero exactly when the projection of
gV +W onto the coordinates

{xi, v1, . . . , vk, w2, . . . , wd}

is full-dimensional, and gV +W has full-dimensional projection onto the
coordinates {v1, . . . , vk, w2, . . . , wd} for g in a neighborhood of e.

We define π : Λk+d(Rn) → Rℓ to project onto the coordinates bi, and
consider the map π ◦ F . We claim that d(π ◦ F )e has full rank, so that
the equation (π ◦ F )(g) = 0 defines a submanifold in a neighborhood of
e. We conclude that Indk(W ) is a submanifold in a neighborhood of V ,
and an element f ∈ TV Grk belongs to TV Indk(W ) exactly when there is
a map A ∈ Hom(Rn,Rn) with d(π ◦ F )(A) = 0 and ηV (A) = f .

We compute that

dFe(A) =
d

dt t=0
etAV ∧W =

d

dt

󰀣
k󰁡

i=1

etAvi

󰀤
∧W

=

k󰁛

i=1

(−1)i+1Avi ∧
k󰁡

j=1
j ∕=i

vj ∧W = Av1 ∧ v2 ∧ . . . ∧ vk ∧W,

where the last equality follows because v1 ∧ W = 0. Furthermore, π is
clearly injective on the image of dFe, and d(π ◦ F )e has maximal rank ℓ.
We also conclude that dF (A) = 0 exactly when S(V ∩ W ) ⊆ V + W. In
terms of a tangent vector ηV (A) ∈ Hom(V,Rn/V ) of Indk(W ), this means
that

ηV (A)(V ∩W ) ⊆ W/V.

This concludes the proof.
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The following proofs of Propositions 6 and Proposition 8 depend on
the following lemma derived from Theorem 3.2 in [CCG12].

Lemma 1. Let Λ = V1 ∪ . . .∪ Vk ⊆ Rn be a generic union of k subspaces
with dimensions d1 ≥ d2 ≥ . . . ≥ dk, with d1 + d2 ≤ n. Then

dim〈η(Λ)〉 = max

󰀫
󰁛

i

󰀣
di + 1

2

󰀤
,

󰀣
n+ 1

2

󰀤󰀬
.

In the following, Λ is a union of subspaces and V = 〈η(Λ)〉. Also let
{e1, . . . , en} be a basis for (Rn)∗, so that {ej ⊗ ei : 1 ≤ i ≤ j ≤ n} is a
basis for (SRn)∗. We make use of the following simple fact.

Lemma 2. Let V,W ⊆ Rn be subspaces with V ∩ W = 0, and let
{b1, . . . , bk} be covectors spanning a complementary subspace to W 0. Then
V 0 is generated by elements of the sets W 0 + 〈bi〉.

Proof of Proposition 6. Let K ∈ Kr be a coordinate subspace, which we
assume w.l.o.g. is the kernel of the projection map πK onto the first r
coordinates, so that K = 〈er+1, . . . , en〉 and K0 = 〈e1, . . . , er〉. The
subspace

Q(K)0 = 〈ei ⊗ ej : i, j ∈ {1, . . . , r}〉
corresponds to the quadratic forms which can be written in terms of the
first r coordinates, and the intersection V0 ∩O(K)0 can be viewed as the
subset of these that vanish on the projection πK(Λ).

Since 2d ≤ r, we can apply Lemma 1 to the image πK(Λ), a union
of subspaces in Rr. We find that no quadratic forms vanish on πK(Λ)
if (1) does not hold. In this case, V is clearly not O(Kr)-identifiable.
Conversely, suppose (1) holds non-strictly. Then, Lemma 1 tells us that V
and 〈η(πK(Λ))〉 have the same dimension. Since 〈η(πK(Λ))〉 = (SπK)(V ),
we conclude thatQ(K), which by definition is the kernel of SπK , intersects
V trivially.

Applying Lemma 2, V is cut out by covectors belonging to

Q(K)0 + 〈ei ⊗ ej〉

as ei⊗ej ranges over the basis of (SRn)∗. Any such extension ofQ(K)0 is a
subspace of Q(K′)0, where K′ is derived from K by the eventual omission
of the basis vectors ei and ej . A viable subspace K′ can always be found
in the family Kr′ with r′ = min{r+2, n}, so V is Q(Kr′)-identifiable.

Proof of Proposition 8. Let K ∈ Kr be as in the proof above. The anni-
hilator S(K)0 corresponds to the quadratic forms that vanish on K, and
so V0 ∩ S(K)0 are the forms vanishing on Λ ∪K. Applying Lemma 1 to
this union, we find that V 0 ∩ S(K)0 is empty unless

k

󰀣
d+ 1

2

󰀤
+

󰀣
n− r + 1

2

󰀤
<

󰀣
n+ 1

2

󰀤
.

In fact, this is equivalent to (2) because
󰀣
n+ 1

2

󰀤
−

󰀣
n− r + 1

2

󰀤
=

󰀣
r + 1

2

󰀤
+ r(n− r).
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Conversely, if (2) holds non-strictly, then Lemma 1 guarantees that
S(K) must intersect V trivially. Applying Lemma 2, we find that V 0 is
generated by covectors from the spaces

S(K)0 + 〈ei ⊗ ej〉.

Every such extension of S(K)0 is a subspace of S(K′)0, where K′ is de-
rived fromK by the eventual omission of either ei or ej . A viable subspace
K′ can always be found in the family S(Kr′) with r′ = min{r+1, n}, and
so V is S(Kr′)-identifiable.
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