A Polynomial Model for Filling In Incomplete Data

Christopher Gadzinski
University of Coimbra

July 2021

A Regression Problem

- A process is producing vectors in \mathbb{R}^{m}.
- The process generates a dataset $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$.
- A new vector \mathbf{x}_{n+1} is generated, but we only observe some of its coordinates.

A Regression Problem

- Find the missing coordinates!
- This is regression.

Reminder: The Linear Regression Model

- Hypothesis: there is a linear function f taking independent variables \xrightarrow{f} dependent variables
in some approximate sense.
- Strategy: find a map f agreeing with the observed dataset $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ with least-squares optimization.

A Collaborative Filtering Problem

- A process is producing vectors in \mathbb{R}^{m}.
- The process generates a dataset $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \ldots$
- ... but coordinates are missing from every datapoint!

A Collaborative Filtering Problem

- We want to infer all the missing coordinates.
- This is a collaborative filtering problem.
- Application: recommender systems (for Netflix, Amazon ...).

A Linear Model for Collaborative Filtering

- Hypothesis: our data is concentrated on a linear subspace.
- Strategy: solve "low rank matrix completion."

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{rank} M \\
\text { subject to } & m_{i, j}=c_{i, j} \quad \text { for all }(i, j) \in \Omega
\end{aligned}
$$

LRMC in Practice

- Linear regression \Leftrightarrow solving a linear system.
- Low rank matrix completion is "hard in general."
- Some numerical methods work in practical problems.
- One popular strategy: minimize the sum of the singular values of M. This can be expressed as a semidefinite program and solved with iterative numerical algorithms.

Reminder: Linear Regression Over a Feature Space

- What if we want to fit a model

$$
\text { dependent variables } \xrightarrow{f} \text { independent variables }
$$

that lives in some linear space \mathcal{M} of model functions?

- If \mathcal{M} is finite-dimensional, this can be interpreted as linear regression over a transformed data set.

Reminder: Linear Regression Over a Feature Space

- Say $\left\{f_{1}, \ldots, f_{r}\right\}$ is a basis for \mathcal{M}. Then solving find $f \in \mathcal{M}$ minimizing $\sum\left(f\left(x_{i}\right)-y_{i}\right)^{2}$
is equivalent to solving

$$
\text { find } w \in \mathbb{R}^{r} \text { minimizing } \sum\left(\left\langle w, \phi\left(x_{i}\right)\right\rangle-y_{i}\right)^{2}
$$

where $\phi(x)=\left(f_{1}(x), \ldots, f_{r}(x)\right)$ is the feature map.

LRMC With a Feature Map?

- Can we use the same trick with LRMC?
- This was proposed by Ongie et. al. in their paper, Tensor Methods for Nonlinear Matrix Completion (2020).
- They proposed the feature map for homogeneous quadratic polynomials:

$$
\phi(x, y, z)=\left(x^{2}, y^{2}, z^{2}, x y, y z, x z\right)
$$

LRMC With a Feature Map?

Research Questions

- Quadratic relationships on the original data turn into linear relationships on the transformed data.
- Problem: Can LRMC infer these relationships?

Research Questions

- Problem: Can LRMC infer these relationships?
- Answer: Suppose we're only observing k coordinates per datapoint. Then, LRMC can only infer our space of polynomial relationships if they are generated by "sparse polynomials," each involving at most k distinct coordinates.
- This is a very restrictive property.

Research Questions

- What's going on?
- Ideally, we'd optimize the unknown entries of the original matrix so that the rank of the transformed matrix is minimized.

Research Questions

- Ideally, we'd optimize the unknown entries of the original matrix so that the rank of the transformed matrix is minimized.
minimize \quad rank $\left[\begin{array}{ccc}a_{1} & \ldots & a_{n} \\ b_{1} & \ldots & b_{n} \\ \vdots & & \vdots \\ f_{1} & \ldots & f_{n}\end{array}\right]$
subject to $\left\{\begin{array}{c}\text { existence of some vectors }\left(x_{i}, y_{i}, z_{i}\right) \text { so that } \\ \quad\left(a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}\right)=\left(x_{i}^{2}, y_{i}^{2}, z_{i}^{2}, x_{i} y_{i}, y_{i} z_{i}, x_{i} z_{i}\right) \\ \text { constraints on the vectors }\left(x_{i}, y_{i}, z_{i}\right)\end{array}\right.$
- ... But, by applying LRMC on the transformed matrix, we're solving a relaxation of this problem!

Research Questions

- Let (x, y, z) be a column of the original matrix with $x=1$ and $y=2$, and let

$$
(a, b, c, d, e, f)=\left(x^{2}, y^{2}, z^{2}, x y, y z, x z\right)
$$

be a column of the transformed matrix.

- We are telling the LRMC solver that $a=1, b=4, d=2$.
- The true constraint on (a, b, c, d, e, f) is hard to use in our LRMC solver...
- But, there is another linear equation to use:

$$
y z=2 z=2 x z \Longrightarrow e=2 f
$$

Research Questions

- Let k coordinates be observed. Instead of $\binom{k+1}{2}$, we can actually enforce

$$
\binom{k+1}{2}+(k-1)(m-k)
$$

constraints on the transformed column.

- This is a big help on sparse data (where $k \ll m$).

What's Next?

- Does our new method suffer from the same severe limitations that the "naive" approach suffered from? (I don't think so!)
- Can we write an efficient LRMC-type solver that uses the new constraints and apply this to real-world collaborative filtering problems? (Contact me if you want to do this!) me@cgad.ski

