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A Regression Problem

◮ A process is producing vectors in Rm.

◮ The process generates a dataset (x1, . . . , xn).

◮ A new vector xn+1 is generated, but we only observe some of
its coordinates.



A Regression Problem

◮ Find the missing coordinates!

◮ This is regression.



Reminder: The Linear Regression Model

◮ Hypothesis: there is a linear function f taking

independent variables dependent variablesf

in some approximate sense.

◮ Strategy: find a map f agreeing with the observed dataset
(x1, . . . , xn) with least-squares optimization.



A Collaborative Filtering Problem

◮ A process is producing vectors in Rm.

◮ The process generates a dataset (x1, . . . , xn). . .

◮ . . . but coordinates are missing from every datapoint!



A Collaborative Filtering Problem

◮ We want to infer all the missing coordinates.

◮ This is a collaborative filtering problem.

◮ Application: recommender systems (for Netflix, Amazon . . . ).



A Linear Model for Collaborative Filtering

◮ Hypothesis: our data is concentrated on a linear subspace.

◮ Strategy: solve “low rank matrix completion.”

minimize rankM

subject to mi ,j = ci ,j for all (i , j) ∈ Ω



LRMC in Practice

◮ Linear regression ⇔ solving a linear system.

◮ Low rank matrix completion is “hard in general.”

◮ Some numerical methods work in practical problems.

◮ One popular strategy: minimize the sum of the singular values
of M. This can be expressed as a semidefinite program and
solved with iterative numerical algorithms.



Reminder: Linear Regression Over a Feature Space

◮ What if we want to fit a model

dependent variables independent variablesf

that lives in some linear space M of model functions?

◮ If M is finite-dimensional, this can be interpreted as linear
regression over a transformed data set.



Reminder: Linear Regression Over a Feature Space

◮ Say {f1, . . . , fr} is a basis for M. Then solving

find f ∈ M minimizing
!

(f (xi )− yi )
2

is equivalent to solving

find w ∈ Rr minimizing
!

(〈w ,φ(xi )〉 − yi )
2

where φ(x) = (f1(x), . . . , fr (x)) is the feature map.



LRMC With a Feature Map?

◮ Can we use the same trick with LRMC?

◮ This was proposed by Ongie et. al. in their paper, Tensor
Methods for Nonlinear Matrix Completion (2020).

◮ They proposed the feature map for homogeneous quadratic
polynomials:

φ(x , y , z) = (x2, y2, z2, xy , yz , xz).



LRMC With a Feature Map?



Research Questions

◮ Quadratic relationships on the original data turn into linear
relationships on the transformed data.

◮ Problem: Can LRMC infer these relationships?



Research Questions

◮ Problem: Can LRMC infer these relationships?

◮ Answer: Suppose we’re only observing k coordinates per
datapoint. Then, LRMC can only infer our space of
polynomial relationships if they are generated by “sparse
polynomials,” each involving at most k distinct coordinates.

◮ This is a very restrictive property.



Research Questions

◮ What’s going on?

◮ Ideally, we’d optimize the unknown entries of the original
matrix so that the rank of the transformed matrix is
minimized.



Research Questions

◮ Ideally, we’d optimize the unknown entries of the original
matrix so that the rank of the transformed matrix is
minimized.

minimize rank
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existence of some vectors (xi , yi , zi ) so that

(ai , bi , ci , di , ei , fi ) = (x2i , y
2
i , z
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i , xiyi , yizi , xizi )

constraints on the vectors (xi , yi , zi )

◮ . . . But, by applying LRMC on the transformed matrix,
we’re solving a relaxation of this problem!



Research Questions

◮ Let (x , y , z) be a column of the original matrix with x = 1
and y = 2, and let

(a, b, c , d , e, f ) = (x2, y2, z2, xy , yz , xz)

be a column of the transformed matrix.

◮ We are telling the LRMC solver that a = 1, b = 4, d = 2.

◮ The true constraint on (a, b, c , d , e, f ) is hard to use in our
LRMC solver. . .

◮ But, there is another linear equation to use:

yz = 2z = 2xz =⇒ e = 2f .



Research Questions

◮ Let k coordinates be observed. Instead of
,k+1

2

-
, we can

actually enforce

.
k + 1

2

/
+ (k − 1)(m − k)

constraints on the transformed column.

◮ This is a big help on sparse data (where k ≪ m).



What’s Next?

◮ Does our new method suffer from the same severe limitations
that the “naive” approach suffered from? (I don’t think so!)

◮ Can we write an efficient LRMC-type solver that uses the new
constraints and apply this to real-world collaborative filtering
problems? (Contact me if you want to do this!)
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