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A Regression Problem

P A process is producing vectors in R™.
» The process generates a dataset (x1,...,Xp).

> A new vector Xx,1 is generated, but we only observe some of
its coordinates.
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A Regression Problem

» Find the missing coordinates!

» This is regression.



Reminder: The Linear Regression Model
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» Hypothesis: there is a linear function f taking

independent variables LA dependent variables

in some approximate sense.

> Strategy: find a map f agreeing with the observed dataset
(x1,...,Xp) with least-squares optimization.



A Collaborative Filtering Problem

P A process is producing vectors in R™.
» The process generates a dataset (X1,...,Xp). ..

» ...but coordinates are missing from every datapoint!
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A Collaborative Filtering Problem
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> We want to infer all the missing coordinates.
> This is a collaborative filtering problem.

» Application: recommender systems (for Netflix, Amazon ...).



A Linear Model for Collaborative Filtering

» Hypothesis: our data is concentrated on a linear subspace.

> Strategy: solve “low rank matrix completion.”

minimize rank M

subject to m;;j =¢;; forall (i,j) € Q
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LRMC in Practice
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Linear regression <> solving a linear system.
Low rank matrix completion is “hard in general.”
Some numerical methods work in practical problems.

One popular strategy: minimize the sum of the singular values
of M. This can be expressed as a semidefinite program and
solved with iterative numerical algorithms.



Reminder: Linear Regression Over a Feature Space

» What if we want to fit a model
dependent variables . independent variables

that lives in some linear space M of model functions?

> If M is finite-dimensional, this can be interpreted as linear
regression over a transformed data set.
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Reminder: Linear Regression Over a Feature Space
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» Say {fi,...,f} is a basis for M. Then solving
find f € M minimizing ) (f(x;) — yi)?
is equivalent to solving
find w € R™ minimizing Y _((w, ¢(x;)) — ;)

where ¢(x) = (fi(x), ..., f(x)) is the feature map.



LRMC With a Feature Map?

? HEHEN °
> 2 HHHE
HE-E°H
HEE- N

» Can we use the same trick with LRMC?

» This was proposed by Ongie et. al. in their paper, Tensor
Methods for Nonlinear Matrix Completion (2020).

» They proposed the feature map for homogeneous quadratic
polynomials:

¢(X7.y7 Z) = (X27y27227Xy7.yzv XZ)'



LRMC With a Feature Map?




Research Questions
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» Quadratic relationships on the original data turn into linear
relationships on the transformed data.

» Problem: Can LRMC infer these relationships?



Research Questions

» Problem: Can LRMC infer these relationships?

» Answer: Suppose we're only observing k coordinates per
datapoint. Then, LRMC can only infer our space of
polynomial relationships if they are generated by “sparse
polynomials,” each involving at most k distinct coordinates.

> This is a very restrictive property.



Research Questions
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» What's going on?

> Ideally, we'd optimize the unknown entries of the original
matrix so that the rank of the transformed matrix is
minimized.



Research Questions

> Ideally, we'd optimize the unknown entries of the original
matrix so that the rank of the transformed matrix is

minimized.
ai dn
- - - bl bn
minimize rank
L ... 1,

existence of some vectors (x;, yj, zj) so that

subject to (ai. bi.ci.di ej. fi) = (X2, y2, 22, Xiyi. YiZis XiZi)

constraints on the vectors (x;, y;, z;)

> ... But, by applying LRMC on the transformed matrix,
we're solving a relaxation of this problem!



Research Questions

» Let (x,y,z) be a column of the original matrix with x =1
and y = 2, and let

(a,b,c.d, e f)=(xy? 2% xy, yz, x2)

be a column of the transformed matrix.
» We are telling the LRMC solver that a=1,b=4,d = 2.

» The true constraint on (a, b, c,d, e, ) is hard to use in our
LRMC solver. ..

» But, there is another linear equation to use:

yz =2z =2xz = e =2f.



Research Questions
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» Let k coordinates be observed. Instead of (k+1) we can

actually enforce
k+1
< 5 )—i—(k—l)(m—k)

constraints on the transformed column.

» This is a big help on sparse data (where k < m).



What's Next?

» Does our new method suffer from the same severe limitations
that the “naive” approach suffered from? (I don't think so!)

» Can we write an efficient LRMC-type solver that uses the new
constraints and apply this to real-world collaborative filtering
problems? (Contact me if you want to do this!)
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