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Abstract

In the preface to Introduction to Topology and Modern Analysis [18], George Simmons writes:

It seems to me that a worthwhile distinction can be drawn between two types of pure
mathematics. The first—which unfortunately is somewhat out of style at present—centers
attention on particular functions and theorems which are rich in meaning and history,
like the gamma function and the prime number theorem, or on juicy individual facts, like

Euler’s wonderful formula

gl o
ittt =%

The second is concerned primarily with form and structure.

“Pure mathematics of the second type” will be our occupation in the first two chapters of this
thesis. In Chapter 1, we will explain how smooth manifolds can be understood in terms of their
coordinate algebras. This perspective is especially helpful to study the relationship between vector
fields and their flows. In Chapter 2, we will borrow some motivation from classical mechanics and
describe an additional algebraic operation (the Poisson bracket) equipped on the coordinate algebra of
a cotangent bundle.

Our third and final chapter, however, is dedicated to an instance of “pure mathematics of the first
type.” Relying on the theoretical framework developed in the first two chapters, we will explain the
Pontryagin maximum principle (PMP) for time-optimal trajectories of a control system.

The Pontryagin maximum principle, first published in 1956 [15], is today a fundamental result in
optimal control theory. (Some references applying the PMP in recent research are [6], [3], and [7].)
Our main reference in studying the PMP was the book [2], but effort has been devoted in this thesis to
present the subject from an original perspective whenever possible.






Resumo

No prefacio do livro Introduction to Topology and Modern Analysis [18], George Simmons afirma:

Parece-me que se pode fazer uma distin¢ao relevante entre dois tipos de matemadtica pura.
A primeira—que infelizmente parece estar um pouco fora de moda—interessa-se por
funcdes e teoremas que sao ricos em significado e interesse histérico, como a funcao
gama e o teorema dos ndmeros primos, ou em factos isolados de interesse substancial,

como a féormula de Euler:

gl o
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A segunda estd interessada primariamente em forma e estrutura.

Seréd na “matemdtica pura do segundo tipo” que se centrard o nosso esfor¢o nos primeiros 2
capitulos desta tese. No 1.° capitulo explicaremos como compreender variedades diferencidveis em
termos das suas dlgebras de coordenadas. Esta perspetiva harmoniza-se com o estudo da relacdo entre
campos de vetores e os seus fluxos. Encontramos motivacao para o 2.° capitulo na mecanica cldssica
e af descreveremos uma outra operagao algébrica (os parénteses de Poisson) associada a dlgebra de
coordenadas de um fibrado cotangente. Contudo, o nosso terceiro e ultimo capitulo € dedicado a
um exemplo de “matematica pura do 1.° tipo”. Usando a teoria desenvolvida nos 1.° e 2.° capitulos,
explicaremos o principio do mdximo de Pontryagin (PMP) para trajetérias 6timas de um sistema de
controlo.

O PMP, publicado originalmente em 1956 [15], € presentemente um resultado fundamental em
teoria do controlo 6timo. (Algumas referéncias de aplicacdo do PMP em estudos recentes sao [6], [3]
e [7].) A nossa referéncia fundamental para o estudo do PMP foi o livro [2]. Contudo, sempre que
possivel, dedicdmos um esforco a apresentar este tema de uma perspetiva original.
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Glossary of Notation

Diff
Dift*
Alg
PolySpc
CartSpc
NGrp
Homy (A, B)
End¢ (A)
Autg(A)
M,N
o,P
X,Y,Z
D.q

T

T

exp(—)
exp, &Xp
AdQ
adX

the category of smooth manifolds

the category of diffeomorphisms between smooth manifolds
the category of unital, commutative real algebras

the category of polynomial maps between Euclidean spaces
the category of smooth maps between Euclidean spaces

the category of diffeomorphisms between real domains

the set of morphisms from A to B in ¥

the set of morphisms from A to A in €

the set of isomorphisms from A to A in ¢

smooth manifolds

diffeomorphisms

vector fields

points

the tangent bundle functor

the cotangent bundle functor

the coordinate algebra functor

the group of diffeomorphisms of M

the Lie algebra of vector fields on M

the Lie algebra of complete vector fields on M

the Poisson bracket on 7*M

the Hamiltonian vector field {H,—} on T*M
the Hamiltonian function of a vector field X € D(M)

the Hamiltonian lift of a vector field, equal to ﬁ X

the exponential function for Lie groups, matrices, and scalars
the exponential function for vector fields

the right and left chronological exponentials for vector fields
the adjoint action of a diffeomorphism

the adjoint action of a vector field






Chapter 1

Coordinate Algebras

When M is a smooth manifold, let C*M denote the space of smooth functions' from M to R. We
equip C*”M with the natural operations of addition and multiplication and call this unital, commutative,
real algebra the coordinate algebra of M.

It is standard to define a vector field on a manifold as a linear operator X : C*M — C”M verifying

the “Leibniz rule"

X(fg)=X(flg+rX(g) (1.1)

for all f,g € C”M. In general, when A is a (unital, commutative, real) algebra, we define the
derivations D(A) of A as the vector space endomorphisms of A that respect Equation (1.1) for all
f,g € A. Let us take a moment to examine the significance of D(A) when A is finite-dimensional.

In this case, we may think of GL(A), the group of vector space automorphisms of A, as a finite-
dimensional Lie group. In the usual way, we think of its Lie algebra gl(A) as the space of vector
space endomorphisms of A. We also know that the set Aut(A) of automorphisms of A is a Lie
subgroup of GL(A). Now, let X € gl(A), and suppose that ¢'X is an automorphism of A for all 7. Then,
differentiating the homomorphism equation e/X (fg) = (X f)(¢'Xg) in the real parameter ¢ gives

XX (fg) = (Xe* (X g) + (¢X f)(Xeg).

With ¢ = 0, this proves that X is a derivation of A. In fact, the converse is true: X is a derivation if and

only if e/X is an automorphism for all 7. This means the following.
Theorem 1. The Lie algebra of Aut(A) C GL(A) is D(A), the set of derivations of A.

Proof. Recall that, when G C H is an inclusion of Lie groups and g C b is the associated inclusion of
Lie algebras, an element X € h belongs to g if and only if ¢/X is in G for all t € R. We have already
proven that X is a derivation if /X is an automorphism of A for all ¢, so it only remains to prove the
converse.

Suppose X is a derivation of A, and let f, g € A be arbitrary. Our claim is that the equation

X (fg)— (¥ f)(e¥g)=Cr=0

IThroughout this thesis, “smooth” means infinitely differentiable.

3



4 Coordinate Algebras

holds for all # € R. Clearly, Cy = 0. Now, we differentiate:

Ci =X (fg) — (Xe™ f)(e™g) — (¢ f)(Xe™g)
=X (" (fg)) — X((¢*f)(e¥g)) = XC,.

We conclude that C; solves the Cauchy problem

Co=0
Ct :XC[,

and so must be constantly 0. O

At least in the case of finite-dimensional algebras, this shows that derivations are the infinitesimal
generators of automorphisms. Perhaps vector fields—derivations of the coordinate algebra C*M—
have a similar relationship with automorphisms of C*M. But, what is an automorphism of C*M?

The answer, as we will show momentarily, is that automorphisms of the algebra C*M will encode
self-diffeomorphisms of the manifold M. Indeed, besides tangent vectors and vector fields, also points,
smooth maps, and manifolds themselves can be considered from an “algebraic point of view.” This
point of view is especially useful to clarify the relationship between vector fields and their flows; for
instance, it will let us define a series formula for the flow of a non-autonomous (time-dependent)
vector field. Such applications of the coordinate algebra formalism, called chronological calculus,
were introduced by Agrachev et. al. in [1] and detailed in their book [2] on control theory. The
relationship between homomorphisms and derivations of an algebra that we have hinted at here will
also be helpful to keep in mind when, in the next chapter, we equip the cotangent bundle 7*M with an
additional operation (the Poisson bracket) and study the derivations and automorphisms associated
with this additional structure.

1.1 Why Coordinate Algebras?

Moments ago, we promised to show that algebra automorphisms of C”M are equivalent to diffeomor-
phisms of M. Actually, more is true: algebra homomorphisms from C*N to C”M are equivalent to
smooth maps from M to N. This remarkable correspondence takes the form of a contravariant functor.
(We will find a few occasions in this thesis to be inspired by category theory. For a reference on the
subject, see [13].)

In the following, Diff is the category of smooth manifolds and Alg is the category of commutative,
unital algebras over R.

Definition 1. The coordinate algebra functor is the contravariant functor

Diff -~ Alg
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which takes a manifold M to its coordinate algebra C”M and a smooth map ¢ : M — N to the algebra

homomorphism

¢: C°N = C°M
d(f)=foo.

Note that the map ¢ defined in this way clearly defines an algebra homomorphism; for example,

o(fg) =(f8)op=(fop)(fop)=0(f)P(g)

Functoriality of this assignment is also easy to prove. Our promised fact can now be stated in the
following way.

Proposition 1. The coordinate algebra functor is fully faithful.

The core of this proposition is contained in the following weaker statement. (In [12], it is referred

to as Milnor’s exercise.)

Lemma 1 (Milnor’s exercise). Let M be a manifold and let P be a manifold with one point. Then the
coordinate algebra functor gives a bijection

Homp;¢(P, M) = Homa s (C”M,C”P).

Of course, maps (smooth or otherwise) from P to M are in bijection with points of M. In what
follows, we will regularly interpret points as inclusions of points and vice versa. Also, note that C*P
is isomorphic to R with its usual algebra structure.

Our solution to Milnor’s exercise is valid under the assumption that M is compact. For the more
general case, we will apply a technical result whose proof we do not discuss. (See Chapter VIII of
[12] for more details.)

Proof. Let ¢: C*M — C*P be a homomorphism. For each element f € ker @, let Zy C M be the zero
set £~1(0). We will argue that there is at least one point xo common to all these zero sets. Then, it will
follow that @(f) = f(xo) for all f € C*M. Indeed, where 1 is the unit, f — @(f)1 always belongs to
the kernel of @, s0 xo € Z;_y(s)1, Which forces @ (f) = f(xp). When xo is interpreted as an inclusion
of P into M, this means that ¢ = Xy, so we conclude that the assignment made by the coordinate
algebra functor from Homp;s(P, M) to Homa (C”M,C*P) is surjective. Of course it is also injective;
when p and ¢ are different points, f(p) # f(q) for some adequately chosen function f € C*M, so
P#q

We proceed to prove the existence of xy. Our first observation is that, because the homomorphism
¢ preserves the unit element, it must also preserve inverses when they exist. Therefore, a non-
vanishing element f of C”M cannot be in the kernel of @, and so no zero set Zy is empty. Our second
observation is that the family of zero sets is closed under finite intersections. Indeed, given any
f.g € ker @, we also have f2+ g* € ker @, and

ZfﬁZ :Zf2+g2‘
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From these two observations, it follows that no finite family of zero sets can have empty intersection.

Suppose, nevertheless, that the whole family of zero sets had finite intersection. To arrive at a
contradiction, we appeal to compactness. Suppose there is some fo € ker ¢ for which Zy, is compact.
Then Zj, is covered by the family of complements of zero sets, {Z]g : f € kerp}. By compactness,
there exists a finite set of functions {fj, ..., f,} for which the sets Z% cover Zy,. This means that the
intersection Zy, NZy, N...NZy, is empty, which is a contradiction.

The existence of a compact zero set Zy, is obviously true when M is compact. In general, it is
possible to construct a function g € C”M that is unbounded on every non-compact closed set. Such a
function clearly has a compact zero set. To find an element in the kernel of ¢ with a compact zero set,
it is enough to take fo = g — @(g)1. O

The more general statement of Proposition 1 now follows.

Proof of Proposition 1. Let @, w: M — N be smooth maps between manifolds and let p € M be
a point. Assume @ = . Then pp = py, and (p/(;) = ?(17) By Lemma 1, we conclude that
©(p) = y(p). This proves that the coordinate algebra functor is faithful.

Next, we show it is full. For any given homomorphism 4: C*N — C”M and point p € M, the
composition ph is an element of Hom(C*N,CP), and so Lemma 1| guarantees the existence of a
unique point g for which § = ph. We define a (not necessarily smooth!) map ¢: M — N by the
equation -

¢(p) = ph.
To finish the proof, we will show that ¢ is smooth in a neighborhood of any point py € M. Of course,
it will follow that ¢ = h.

Let U be an open neighborhood of ¢(py) € N equipped with a coordinate chart
X=(x1,...,%,): U—R".

By standard “bump function” techniques, we can find a compact neighborhood K C U of ¢(py) and
a bump function b: N — R so that » = 1 over K but b = 0 outside of U. We extend the chart x to a
smooth map x' = (x,...,x},): N — R by setting

b(p)xi(p) :xeU

5(p)= 0 xgU.

By construction, X' = x over K.

First of all, note that the compositions x} o ¢ are smooth. Indeed, for a given point p € M,

—

(xio@)(p) = 9(p)(x}) = (ph)(x}) = (h(x}))(P),

and by hypothesis / takes values in C*°M. This means that x’ o ¢ is smooth. It remains only to prove
that, within some neighborhood V of pg, ¢ takes values in K; then, we will know that xo @|y is a
well-defined smooth map, meaning that ¢ is a smooth map near py.
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This last fact follows from a similar technique. Consider another bump function c: N — R that
takes c(@(po)) = 1 but satisfies ¢ = 0 outside of K. By the above argument, c o ¢ is smooth, and so
the set

V={peM:(cop)(p)>0} M

is an open neighborhood of py. By construction of ¢, every element of V is sent to within K by ¢, so
this concludes the proof. 0

A fully faithful functor is essentially injective on objects, so C”M determines M up to isomor-
phism.? Indeed, given an algebra A which we are told is the coordinate algebra of a manifold, we
can define a set M = Hom(A,R) and say a map ¢: M — R is smooth when it can be written as
(@) = @(a) for some element a € A. If A is the coordinate algebra of a manifold, this construction
recovers the underlying manifold up to its smooth structure! Now that this equivalence is proven, we
will frequently reinterpret smooth maps as algebra homomorphisms and vice versa without needing
the hat notation.

At first glance, it may be quite surprising that manifolds can be encoded by algebraic structures in
this way. However, category theory gives us an intuitive reason to expect Proposition 1, which we will
now explain.

When % is an arbitrary category, the Yoneda lemma tells us that the contravariant functor

h™: € — ¢
M — M = Hom(M, —)

is fully faithful. Putting ¢ = Diff;, this tells us that M is determined up to isomorphism by the covariant
functor
Hom(M, —): Diff — Set

that records the smooth maps out of M. Now, let PolySpc be the subcategory of Diff whose objects are
the spaces R” for natural numbers n € {0, 1,...} and whose morphisms are the polynomial functions
between these spaces. We define the PolySpc-algebra of a manifold as follows.

Definition 2. When M is a manifold, the PolySpc-algebra of M is
c” (M) = HomPolySpc (M7 _)7

the restriction of Hompg(M, —) to a functor from PolySpc to Set.

As a Hom-functor, the PolySpc-algebra of a manifold preserves limits, and, in particular, products.
It turns out to be natural to define the category of “abstract” PolySpc-algebras in the following way.

Definition 3. A PolySpc-algebra is a product-preserving functor
PolySpc —— Set,

and a morphism between PolySpc-algebras is a natural transformation.

2This is meant in the categorical sense: if C*°M = C*N for some other manifold N, then there is an isomorphism M = N.
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Actually, PolySpc-algebras have a familiar interpretation.

Proposition 2. The category of PolySpc-algebras is equivalent to Alg, and, under this equivalence,
the coordinate algebra functor is naturally isomorphic to Hompoiyspe (M, —).

A proof in full detail is not productive to include in this thesis, but once the basic idea is grasped
it is straightforward. We will merely explain the way that a PolySpc-algebra originates an algebraic
structure, and why it happens, in this algebraic structure, that the product distributes over the sum.

Proof hint for Proposition 2. Let F: PolySpc — Set be a PolySpc-algebra. The set of elements for
our commutative algebra will be A = F(R). Since F is product-preserving, F(R?) and F (R x R) can
be viewed as the one-point set 1 and the product A x A respectively. Let p: R? — R take p(x,y) = xy,
let s: R?> — R take s(x,y) = x+, and, for every a € R, let ug : R — R take ug(—) = o. We claim
that the maps

Fp: AxA—A

Fs:AxA—A

Fug:1—A

endow A with, respectively, a product, sum, and inclusion of scalars.
As an example, let us prove that the product Fp distributes over the sum Fs. Consider the
following diagram over PolySpc.

(7 x ) X (70 X 73)

R x (R xR) (RxR) x (RxR)
idxsl lpxzv
RxR RxR

I
R

(The maps 7, m and 73 are the three projections of the product A X A X A, and parenthesizations
of products in the top row annotate the construction of the maps id x s and p x p, wherein (— x —)
is applied as a bifunctor.) It is straightforward to check that this diagram commutes: an element
(a,b,c) € R? is carried to a(b + c) along the lower path, and carried to ab + ac along the upper path.
Because F is product-preserving, applying F takes the diagram above to an analogous commutative
diagram in Set whose commutativity condition reads

(Fp)(a,(Fs)(b,c)) = (Fs)((Fp)(a,b), (Fp)(a,c)).
O
In summary, the coordinate algebra of a manifold M can be viewed as the restriction of the usual

Yoneda embedding of M to PolySpc. The conclusion of Proposition 1 is that this restriction is not so
severe as to break the normal conclusion of the Yoneda lemma.
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It should be noted that the coordinate algebra C*M admits natural operations besides addition and
multiplication. Indeed, every smooth map g: R" — R gives us an operation on C”M, namely

Cr: (C°M)" = C°M
Co(fis-sfu) = (P> g(fi(p),- -, fu(P)))-

An algebra A equipped with an operation A, for every smooth map g: R" — R, subject to certain
natural axioms, is called a C”-algebra. The easiest way to describe a C”-algebra in rigor is as
a product-preserving functor from CartSpc to Set, where CartSpc is the full subcategory of Diff
generated by the spaces {R?,R!,...}. The natural C*-algebra structure on C*M is equivalent to the
restriction of the Yoneda embedding of M to CartSpc.

At this point, one may ask whether the coordinate algebra functor is essentially surjective on
objects. This turns out to not be the case. For a counter-example, consider the quotient algebra

D = R[x/ ().

A homomorphism from C*M to D is the same as a tangent vector of M. Indeed, where ¢: C*M — D
is given by @(f) = @o(f) + @1 (f)x for real-valued functions ¢y and ¢@;, writing the homomorphism

law ¢(fg) = @¢(f)@(g) in coordinates gives

o0 (fg) = eo(f)o(g)
01(fg) = 0o (f)@r1(g) + @1 (f)o(g)-

This means that ¢; satisfies the classical definition of a tangent vector at the point ¢y. We get the idea
that the geometric structure associated with ID is something like an interval of infinitesimal length!?
Although we will not prove this here, it can be shown that D is not the coordinate algebra of any
manifold. Pursuing these questions further would lead us to consider certain smooth toposes which
generalize the category Diff. For more details on these topics, see [14]. In this work we will deal
only with classical manifolds; the coordinate algebra perspective will merely be a way to organize our
calculations about them. We will also not find any occasion to invoke the C™-algebra structure of a
coordinate algebra. However, knowing about C*-algebras makes the term “coordinate algebra” more
natural; C”M is generated as a C™-algebra by some sort of “coordinate functions” of the sort that we
have constructed in the proof of Proposition 1.*

Now, let us begin to explain some applications of the coordinate algebra framework.

Before a student of differential geometry learns the “classical definition” of tangent vectors as
functionals on algebras of germs, they probably have the naive expectation that a tangent vector
should be defined as a “velocity vector” taken by a trajectory of points. Unfortunately, the classical
limit-based definition for “velocity vectors” only applies to curves in a topological vector space, and
there appears to be no natural way to embed an arbitrary manifold into a TVS. Actually, this is not

31f we substitute the ideal (x?) with (x*) for some k > 1, a morphism from C*M to D becomes an object known as a
“(k—1)-jet,” which is something like an equivalence class of curves modulo their higher derivatives up to order k— 1 at a
given point.

4The term “coordinate ring” is quite standard in algebraic geometry, where this denomination is a little easier to defend.
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true! We will see now that the representation of points as maps from C”M to R can be regarded as an
embedding of M into a certain Fréchet space. More generally, we will be able to encode any smooth
map ¢ as an element in a Fréchet space, and “tangent vectors to ¢” will turn out to encode sections of
the tangent bundle along ¢.

Let us recall some important regularity properties for trajectories in a topological vector space.

Definition 4. Let V be a TVS, let I C R be a compact interval, and let

vil—V

t— v

be a trajectory. In the following, let U quantify over all open neighborhoods of the origin in V. We
say that v is:

1. Measurable when, for allw €V, v~ (w+U) is a measurable set.

2. Locally bounded when, for each ty € I, there exists some real non-negative constants € and C
so that vy € CU whenever |s —1y| < €.

3. Lipschitz when there exists a constant C so that, for every t,s € I, there holds v, — vs € C|t — s|U.

4. Differentiable at t when the limit
. Vite =Vt
lim ———
e—=0 £

converges in'V.

In the following, all families are implicitly required to be measurable and locally bounded.
To perform computations with differentiable families, we’ll frequently use the following general-
ized “product rule.”

Proposition 3 (Product rule). Let X,Y and Z be topological vector spaces, let x and y be trajectories
over some interval I into the spaces X and Y respectively, and let P: X XY — Z be a continuous
bilinear map. If x and y are differentiable at ty € I, then 7z, = P(x;,y;) is also differentiable at ty, with

derivative
xt() = P(xfovyto) +P(xt()7yt0)'

Proof. The proof proceeds as it does in single-variable calculus:

lim Zlo-‘re _Zto — lim P(-xlo-‘rs _-xtoaylo-i-e) +P(-xto7yto+8 _yto)

£—0 € e—0 £
— lim P (Xto+8 — Xty ,yt0+8> +lim P (xt(), Yio+e _ylo)
e—0 e—0
= P(xl‘oayto) +P(xtoayt0)a
where for the last equality we have used continuity of P. O

Now, we define a topology on the coordinate algebra of a manifold.
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Definition 5. Let K be a compact subset of M endowed with coordinates
X=(x1,...,%,): K> R"

and let s € N={0,1,...}. The C*-seminorm ||—||; ¢ : C°M — R is defined by

ol =sop {| (4550) )] P K5 1]

where S runs over multisets of cardinality s.

Note that, where s = 0 and K = M, the C*-seminorm is just the supremum norm. For s > 0, the
C”-seminorm is not a norm even with K = M, since it sends e.g. all constant functions to 0. However,
it is straightforward to check that || —||, x , is at least a seminorm.

Definition 6. The C*-topology is the topology generated by all seminorms of the form ||—|| g -

Convergence under the C*-topology corresponds to uniform convergence of partial derivatives on
every compact set. Since it was induced by a family of seminorms, this topology makes C*M into
a TVS. It is not hard to see that C”M is also complete under this topology. Furthermore, it can be
shown, under the standard assumption that M is second-countable, that only a countable collection
of C”-seminorms suffice to induce the topology on C”M. Thus, the C*-topology makes C*M into a
Fréchet space.

Finally, we need to topologize our spaces of maps between coordinate algebras. This is more
straightforward: the vector spaces Homrys(C*”N,C*M) of continuous linear maps between C*-
topologies will take the topology of pointwise convergence.

We now affirm that various important maps between our newly defined topological spaces are
continuous. Unfortunately, the proof of these facts had to be omitted.

Proposition 4. The product (—-—): C*M x C*M — C*M is continuous.
Proposition 5. The composition map
(—o—): Homrys(C”O,C”N) x Homyys(C”N,C”M)
— Homrys(C”0,C”M)
is continuous.

Proposition 6. When @ : M — N is a smooth map between manifolds, ¢ : C°N — C*M is a continu-
ous linear map between C™-topologies.

Proposition 7. The action of a vector field over M on elements of C”M is continuous.

Proposition 4 means that C*M is, besides a topological vector space, a topological algebra.
Proposition 5 justifies the use of the product rule to differentiate compositions of time-dependent
families of smooth maps. Finally, Propositions 6 and 7 mean that smooth maps and vector fields are
embedded as elements in our Fréchet spaces of operators.

We are now prepared to investigate the “tangent spaces” to Hom-sets of smooth maps.
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Definition 7. When % is a subset of a topological vector space V and p € %, the tangent space T, %
is the subset of elements v € V so that

q0 =p
go=v
for some curve q: R — %.

Definition 8. Let O: A — B be a homomorphism of unital algebras. A Q-derivation is a linear map
X : A — B which, for every f,g € A, satisfies

X(fg) =X(f)0(g) +0O(f)X(g)-

Proposition 8. Let Q be a smooth map from M to N. Every element of the tangent space
TQ HomTVS (CMN, COOM)

is a Q-derivation.

Proof. Let P, € Homujg(C*N,C*M) be such that Py = Q and Py = X. Since we are working in the
pointwise topology, Py = X means that, for any f € C*M, P,(f) is a differentiable trajectory in C°N
with derivative

(&) 20 =x0.

Now, let g € C*M also be arbitrary, and develop X (fg) with the homomorphism law and the product
rule to obtain

x(f9) = (5) PR = AW +OUAG)

=X(f)0(g) +Q(f)X(g).
0

If M is the one-point manifold and Q encodes the inclusion of a point, a Q-derivation is a tangent
vector at Q. If M = N and Q = id, a Q-derivation is a vector field on M. More generally, a Q-derivation
encodes what, in the classical perspective, we would call a section of TN along Q.

The objects we will most interested in, however, are vector fields and self-diffeomorphisms. The
next proposition puts a tool linking these two kinds of objects—the exponential map—under the lens

of coordinate algebras.

Proposition 9. Let X be a complete vector field on M. Then the Cauchy problem

Qo =1id

. (1.2)
O =0 X

has a unique solution, namely Q; = exp(tX), among the class of Lipschitz trajectories

QI R — EndTVS (CNM).
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In particular, T,q Endrys(C”M) contains the set of complete vector fields on M.

Notice how, under the coordinate algebra perspective, it becomes evident how the exponential
map for vector fields is analogous to the exponential maps for matrices and scalars!

Fartial proof of Proposition 9. Suppose Oy is a Lipschitz family satisfying (1.2). Then, for any given
point p € M, p; = pQ; must also be a Lipschitz trajectory satisfying the Cauchy problem

po=7rp
pr = pOiX = pX.

The second equation is simply the integral curve equation—in classical language, p, = X(p;). It
follows from the theory of ODEs that p, is uniquely determined as pexp(zX), and so Q; must be the
flow exp(#X). We must omit a proof that exp(zX) is in fact a Lipschitz family. O

Remark 1. Unfortunately, many technical details in this section regarding the topologization of operator
spaces had to be overlooked. Our focus will be on “formal” questions more than on “technical” ones;
we are interested more in the fact that the exponential map verifies an equation like

% exp(tX) = exp(tX)X

than in the technical aspect of what it means for a family of smooth maps to be Lipschitz-continuous
in a real parameter. However, before ignoring them in the sequel, let us take a moment to discuss why
we are not using a simpler topologization.

Suppose that, rather than the C*-topology, we equipped C”M with the (weaker) topology of
pointwise convergence of functions. A smooth map still gives a continuous map between coordinate
algebras under this topology, and a family O, of smooth maps between manifolds would be Lipschitz or
differentiable exactly when, for every point p, the path pQ; is respectively Lipschitz or differentiable.
Under these definitions, the previous proposition follows directly from what we know about the
regularity of integral curves.

However, there are some serious drawbacks to this approach. Most significantly, this weaker
topology makes any non-zero tangent vector M into an unbounded linear functional, so the families of
points or maps can no longer be differentiated meaningfully.

Remark 2. The author conjectures that converse of Proposition 8 holds under the hypothesis that M is
compact. We also conjecture that the inclusion proven in Proposition 9 is strict.

Now, we consider a generalization of the Cauchy problem (1.2) that dictates the flow of a non-
autonomous vector field—a vector field that depends on time. The flows of non-autonomous vector
fields will become important when we discuss control systems in Chapter 3. We will need several
more technical results, stated without proof. (For more details on the missing proofs in this chapter,
see [2].)

In the following, let Aut(M) be the group of diffeomorphisms of C**M. All intervals I are assumed
to be compact, and all ODEs are understood to hold almost everywhere over the domain of interest.
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Theorem 2. Let Q: I — Aut(M) be a Lipschitz family. Then Q is almost everywhere differentiable.
Furthermore, for arbitrary ty € I, it is characterized as the unique Lipschitz family P: [ — Aut(M)
solving the Cauchy problem

}30 - an

} (1.3)
b =PX

where X, is the vector field Q, th.

T